• Title/Summary/Keyword: Coupled-Field Analysis

Search Result 530, Processing Time 0.026 seconds

Development of Aerodynamic Analysis Technology for Wind Turbines using a Multibody Dynamic Analysis Software (다물체 동력학 해석 프로그램을 이용한 풍력발전기 공력해석 기술개발)

  • Rim, Chae Whan;Bang, Je Sung;Cho, Huije;Moon, Seok Jun;Chung, Tae Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.180.2-180.2
    • /
    • 2010
  • Simulation technology for dynamic analysis of wind turbine is developed. The Aerodyn and the DAFUL are chosen for aerodynamic analysis and multi-body and flexible body dynamics respectively. Subroutines and variables of Aerodyn developed by NREL are analyzed with hub-height wind data, full field turbulent wind data and Airfoil data. The interface to perform coupled analysis between AeroDyn and DAFUL, GUI for modeling several parts of wind turbines are developed. The program will be extended to analyze the coupled analysis of aerodynamic and hydrodynamic behavior for floating offshore wind turbines.

  • PDF

Analysis of Temperature Distribution in EHV GIS Three-Phase Busbar Using Analytic Technique (해석적 기법을 이용한 초고압 GIS용 삼상모선의 온도분포 해석)

  • Hahn, Sung-Chin;Kim, Joong-Kyoung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.4
    • /
    • pp.196-202
    • /
    • 2006
  • This paper presents a new magneto-thermal finite element analysis for predicting the temperature rise of the EHV GIS busbar. Joule's heat due to current flowing in the main conductor and the heat due to the induced eddy current in the tank are calculated by the magnetic field analysis. And these heats are used as the input data to predict the temperature rise for the thermal analysis. However, it is not easy to apply the heat-transfer coefficients on the boundaries for the thermal analysis. In this paper, the heat-transfer coefficients on the boundaries are analytically calculated by applying the Nusselt number considering material constant and model geometry for the natural convection. The temperature distribution in the busbar by coupled magneto-thermal finite element analysis shows good agreement with the experimental data.

The effect of magnetic field and inclined load on a poro-thermoelastic medium using the three-phase-lag model

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.243-251
    • /
    • 2024
  • In the current work, a poro-thermoelastic half-space issue with temperature-dependent characteristics and an inclined load is examined in the framework of the three-phase-lag model (3PHL) while taking into account the effects of magnetic and gravity fields. The resulting coupled governing equations are non-dimensional and are solved by normal mode analysis. To investigate the impacts of the gravitational field, magnetic field, inclined load, and an empirical material constant, numerical findings are graphically displayed. MATLAB software is used for numerical calculations. Graphs are used to visualize and analyze the computational findings. It is found that the physical quantities are affected by the magnetic field, gravity field, the nonlocal parameter, the inclined load, and the empirical material constant.

Electric Discharge Analysis Using Nonlinarly-Coupled Equation of Electromagnetic Field and Charge Transport (방전현상 해석을 위한 전자장 및 전하이동 방정식의 비선형 결합 알고리즘)

  • Lee, Se-Yeon;Park, Il-Han;Lee, Se-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1494-1495
    • /
    • 2006
  • A complete finite element analysis method for discharge onset process, which is governed and coupled by charge transport equation and electric field equation, was presented. The charge transport equation of first order was transformed into a second-order one by utilizing the artificial diffusion scheme. The two second-order equations were analyzed by the finite element formulation which is well-developed for second-order ones. The Fowler-Nordheim injection boundary condition was adopted for charge transport equation. After verifying the numerical results by comparing to the analytic solutions using parallel plane electrodes with one carrier system, we extended the result to blade-plane electrodes in 2D xy geometry with three carriers system. Radius of the sharp tip was taken to be 50 ${\mu}m$. When this sharp geometry was solved by utilizing the space discretizing methods, the very sharp tip was found to cause a singularity in electric field and space charge distribution around the tip. To avoid these numerical difficulties in the FEM, finer meshes, a higher order shape function, and artificial diffusion scheme were employed.

  • PDF

Vertical Vibration Analysis of Single Pile-Soil Interaction System Considering the Interface Spring (접합면 스프링요소를 고려한 단말뚝-지반 상호작용계의 수직진동해석)

  • 김민규;김문겸;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.106-113
    • /
    • 2002
  • In this study, a numerical analysis method for soil-pile interaction in frequency domain problem is presented. The total soil-pile interaction system is divided into two parts so called near field and far field. In the near field, beam elements are used for a pile and plain strain finite elements for soil. In the far field, dynamic fundamental solution for multi-layered half planes based on boundary element formulation is adopted for soil. These two fields are coupled using FE-BE coupling technique In order to verify the proposed soil-pile interaction analysis, the dynamic responses of pile on multi-layered half planes are simulated and the results are compared with the experimental results. Also, the dynamic response analyses of interface spring elements are performed. As a result, less spring stiffness makes the natural frequency decrease and the resonant amplitude increase.

  • PDF

A Study on the Fatigue Analysis of Glass Fiber Reinforced Plastics with Linear and Nonlinear Multi-Scale Material Modeling (선형과 비선형 다중 스케일 재료 모델링을 활용한 유리섬유 강화 플라스틱의 피로해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.81-93
    • /
    • 2020
  • The fatigue characteristics of glass fiber reinforced plastic (GFRP) composites were studied under repeated loads using the finite element method (FEM). To realize the material characteristics of GFRP composites, Digimat, a mean-field homogenization tool, was employed. Additionally, the micro-structures and material models of GFRP composites were defined with it to predict the fatigue behavior of composites more realistically. Specifically, the fatigue characteristics of polybutylene terephthalate with short fiber fractions of 30wt% were investigated with respect to fiber orientation, stress ratio, and thickness. The injection analysis was conducted using Moldflow software to obtain the information on fiber orientations. It was mapped over FEM concerned with fatigue specimens. LS-DYNA, a typical finite element commercial software, was used in the coupled analysis of Digimat to calculate the stress amplitude of composites. FEMFAT software consisting of various numerical material models was used to predict the fatigue life. The results of coupled analysis of linear and nonlinear material models of Digimat were analyzed to identify the fatigue characteristics of GFRP composites using FEMFAT. Neuber's rule was applied to the linear material model to analyze the fatigue behavior in LCF regimen. Additionally, to evaluate the morphological and mechanical structure of GFRP composites, the coupled and fatigue analysis were conducted in terms of thickness.

NUMERICAL FLOW FIELD ANALYSIS OF AN ARCJET THRUSTER (Arcjet Thruster 유동의 전산해석)

  • Shin, Jae-Ryul;Choi, Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.101-105
    • /
    • 2006
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant Hydrazine (N2H4) as a working fluid. The Reynolds Averaged Navier-Stokes (RANS) equations are modified to analyze compressible flows with the thermal radiation and electric field. The Maxwell equation, which is loosely coupled with the fluid dynamic equations through the Ohm heating and Lorentz forces, is adopted to analyze the electric field induced by the electric arc. The chemical reactions of Hydrazine were assumed to be infinitely fast due to the high temperature field inside the arcjet thruster. The chemical and the thermal radiation models for the nitrogen-hydrogen mixture and optically thick media respectively, were incorporated with the fluid dynamic equations. The results show that performance indices of the arcjet thruster with 1kW arc heating are improved by amount of 180% in thrust and 200% in specific impulse more than frozen flow. In addition to thermo-physical process inside the arcjet thruster is understood from the flow field results.

  • PDF

Analysis and research on teeth thermodynamic coupling contact of gear transmission system

  • Wang, Xigui;Wang, Yongmei;Zhao, Xuezeng;Li, Xinglin
    • Coupled systems mechanics
    • /
    • v.4 no.3
    • /
    • pp.237-249
    • /
    • 2015
  • In the gear meshing process, gear temperature field concerns the meshing surface friction, the friction heat depends on the contact pressure, the contact pressure is affected by the elastic deformation of gears and the temperature field caused by the thermal deformation, so the temperature field, stress field and displacement field should be mutual coupling. It is necessary to consider in meshing gear pair in the operation process of thermodynamic coupling contact stress (TCCS) and thermodynamic coupling deformation (TCD), and based on thermodynamic coupling analysis (TCA) of gear teeth deformation.

Higher order zig-zag plate theory for coupled thermo-electric-mechanical smart structures (열-기계-전기 하중 하에서의 지능 복합재 평판 고차이론)

  • Oh, Jin-Ho;Cho, Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.9-14
    • /
    • 2002
  • A higher order zig-zag plate theory is developed to accurately predict fully coupled mechanical, thermal, and electric behaviors. Both the in-plane displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in tern-is of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux. The numerical examples of coupled and uncoupled analysis demonstrate the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings combined.