• 제목/요약/키워드: Coupled meteorological and hydrological model

검색결과 3건 처리시간 0.018초

Hydro-meteorological analysis of January 2021 flood event in South Kalimantan Indonesia using atmospheric-hydrologic model

  • Chrysanti, Asrini;Son, Sangyoung
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.147-147
    • /
    • 2022
  • In January 2021 heavy flood affected South Kalimantan with causing many casualties. The heavy rainfall is predicted to be generated due to the ENSO (El Nino-Southern Oscillation). The weak La-Nina mode appeared to generate more convective cloud above the warmed ocean and result in extreme rainfall with high anomaly compared to past historical rainfall event. Subsequently, the antecedent soil moisture distribution showed to have an important role in generating the flood response. Saturated flow and infiltration excess mainly contributed to the runoff generation due to the high moisture capacity. The hydro-meteorological processes in this event were deeply analyzed using the coupled atmospheric model of Weather Research and Forecasting (WRF) and the hydrological model extension (WRF-Hydro). The sensitivity analysis of the flood response to the SST anomaly and the soil moisture capacity also compared. Result showed that although SST and soil moisture are the main contributors, soil moisture have more significant contribution to the runoff generation despite of anomaly rainfall occurred. Model performance was validated using the Global Precipitation Measurement (GPM) and Soil Moisture Operational Products System (SMOPS) and performed reasonably well. The model was able to capture the hydro-meteorological process of atmosphere and hydrological feedbacks in the extreme weather event.

  • PDF

Uncertainty investigation and mitigation in flood forecasting

  • Nguyen, Hoang-Minh;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.155-155
    • /
    • 2018
  • Uncertainty in flood forecasting using a coupled meteorological and hydrological model is arisen from various sources, especially the uncertainty comes from the inaccuracy of Quantitative Precipitation Forecasts (QPFs). In order to improve the capability of flood forecast, the uncertainty estimation and mitigation are required to perform. This study is conducted to investigate and reduce such uncertainty. First, ensemble QPFs are generated by using Monte - Carlo simulation, then each ensemble member is forced as input for a hydrological model to obtain ensemble streamflow prediction. Likelihood measures are evaluated to identify feasible member. These members are retained to define upper and lower limits of the uncertainty interval and assess the uncertainty. To mitigate the uncertainty for very short lead time, a blending method, which merges the ensemble QPFs with radar-based rainfall prediction considering both qualitative and quantitative skills, is proposed. Finally, blending bias ratios, which are estimated from previous time step, are used to update the members over total lead time. The proposed method is verified for the two flood events in 2013 and 2016 in the Yeonguol and Soyang watersheds that are located in the Han River basin, South Korea. The uncertainty in flood forecasting using a coupled Local Data Assimilation and Prediction System (LDAPS) and Sejong University Rainfall - Runoff (SURR) model is investigated and then mitigated by blending the generated ensemble LDAPS members with radar-based rainfall prediction that uses McGill algorithm for precipitation nowcasting by Lagrangian extrapolation (MAPLE). The results show that the uncertainty of flood forecasting using the coupled model increases when the lead time is longer. The mitigation method indicates its effectiveness for mitigating the uncertainty with the increases of the percentage of feasible member (POFM) and the ratio of the number of observations that fall into the uncertainty interval (p-factor).

  • PDF

MODIS 위성영상으로부터 추출된 엽면적지수(LAI)가 SLURP 모형의 Penman-Monteith 증발산량에 미치는 영향 평가 (Assessment of MODIS Leaf Area Index (LAI) Influence on the Penman-Monteith Evapotranspiration of SLURP Model)

  • 하림;신형진;박근애;김성준
    • 대한토목학회논문집
    • /
    • 제28권5B호
    • /
    • pp.495-504
    • /
    • 2008
  • 수문 모형을 이용한 일 유출모의에 있어 증발산량은 중요한 변수로 명시되고 있다. 증발산량 추정에 있어서는 예를 들어, FAO Penman Monteith 공식을 이용할 경우 식생의 상태를 잘 반영하는 LAI(엽면적지수) 같은 인자는 상당한 영향을 미친다. 최근에는 고정된 양으로 식생 상태를 추정하는 데 있어, 원격탐사 기법을 이용한 MODIS 위성영상 자료로부터 추정된 LAI를 이용하고 있으며, 시계열 LAI 공간자료는 토지피복도와 함께 증발산량 추정을 위해 활용된다. 본 연구에서는 한강 상류부에 위치한 충주댐 유역($6661.3km^2$)의 댐 유입량을 모의하기 위해 SLURP 수문 모형을 적용하였으며, FAO Penman Monteith 공식을 통한 증발산량 추정에 식생인자가 미치는 영향을 분석하기 위해 4년(2001년-2004년) 동안의 MODIS LAI 자료를 구축하였다. 4년 동안의 9개 기상관측소 지점 기상자료 및 댐 유입량 자료와 MODIS LAI 자료를 기반으로 모델 보정(2001년, 2003년) 및 검증(2002년, 2004년)을 실시 한 결과, 평균 Nash-Sutcliffe 모델 효율 계수는 0.66이었다. 유역의 활엽수림, 침엽수림 그리고 혼효림에서의 4년 평균 MODIS LAI가 각각 3.64, 3.50, 그리고 3.63이었으며, 이에 따른 Penman Monteith ET는 639.1, 422.4, 그리고 631.6 mm로 모의되었다.