• Title/Summary/Keyword: Coupled circuits

Search Result 162, Processing Time 0.022 seconds

Effect of Feed Substrate Thickness on the Bandwidth and Radiation Characteristics of an Aperture-Coupled Microstrip Antenna with a High Permittivity Feed Substrate

  • Kim, Jae-Hyun;Kim, Boo-Gyoun
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.101-107
    • /
    • 2018
  • The impedance bandwidth and radiation characteristics of an aperture-coupled microstrip line-fed patch antenna (ACMPA) with a high permittivity (${\varepsilon}_r=10$) feed substrate suitable for integration with a monolithic microwave integrated circuit (MMIC) are investigated for various feed substrate thicknesses through an experiment and computer simulation. The impedance bandwidth of an ACMPA with a high permittivity feed substrate increases as the feed substrate thickness decreases. Furthermore, the front-to-back ratio of an ACMPA with a high permittivity feed substrate increases and the cross-polarization level decreases as the feed substrate thickness decreases. As the impedance bandwidth of an ACMPA with a high permittivity feed substrate increases and its radiation characteristics improve as the feed substrate thickness decreases, the ACMPA configuration becomes suitable for integration with an MMIC.

A design and fabrication of active phased array antenna for beam scanning using injection-locking coupled oscillators (Injection-Locking Coupled Oscillators를 이용한 빔 주사 용 능동 위상배열안테나의 설계 및 제작)

  • 이두한;김교헌;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1622-1631
    • /
    • 1997
  • A 3-stages Active Microstrip Phased Array Antenn(AMPAA) is implemented using Injection-Locking Coupled Oscillators(ILCO). The AMPAA is a beam scanning active antenna with capability of electrical scanning by frequency varation of ILCO. The synchronization of resonance frequencies in array elements is occured by ILCO, and the ILCO amplifies the injection signal and functions as a phase shifter. The microstrip ptch is operated as a radiation element. The unilateral amplifier is a mutual coupling element of AMPAA, eliminates the reverse locking signal and controls the locking bandwidth of ILCO. The possibility of Monolithic Microwave Integrated Circuits(MMIC) of T/R module is proposed by simplified and integrated fabrication process of AMPAA. The 0.75.$lambda_{0}$ is fixed for a mutual coupling space to wide the scanning angle and minimize the multi-mode. The AMPAA has beam scanning angle of 31.4.deg., HPBW(Half Power Beam Widths) of 26.deg., directive gain of 13.64dB and side lobe of -16.5dB were measured, respectively.

  • PDF

Sliding Mode Controller Applied to Coupled Inductor Dual Boost Inverters

  • Fang, Yu;Cao, Songyin;Wheeler, Pat
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1403-1412
    • /
    • 2019
  • A coupled inductor-dual boost-inverter (CIDBI) with a differential structure has been presented for application to a micro-inverter photovoltaic module system due to its turn ratio of a high-voltage level. However, it is difficult to design a CIDBI converter with a conventional PI regulator to be stable and achieve good dynamic performance, given the fact that it is a high order system. In view of this situation, a sliding mode control (SMC) strategy is introduced in this paper, and two different sliding mode controllers (SMCs) are proposed and adopted in the left and right side of two Boost sub-circuits to implement the corresponding regulation of the voltage and current. The schemes of the SMCs have been elaborated in this paper including the establishment of a system variable structure model, selection of the sliding surface, determination of the control law, and presentation of the reaching conditions and sliding domain. Finally, the mathematic analysis and the proposed SMC are verified by experimental results.

A Simple Structure of Zero-Voltage Switching (ZVS) and Zero-Current Switching (ZCS) Buck Converter with Coupled Inductor

  • Wei, Xinxin;Luo, Ciyong;Nan, Hang;Wang, Yinghao
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1480-1488
    • /
    • 2015
  • In this paper, a revolutionary buck converter is proposed with soft-switching technology, which is realized by a coupled inductor. Both zero-voltage switching (ZVS) of main switch and zero-current switching (ZCS) of freewheeling diode are achieved at turn on and turn off without using any auxiliary circuits by the resonance between the parasitic capacitor and the coupled inductor. Furthermore, the peak voltages of the main switch and the peak current of the freewheeling diode are significantly reduced by the coupled inductor. As a result, the proposed converter has the advantages of simple circuit, convenient control, low consumption and so on. The detailed operation principles and steady-state analysis of the proposed ZVS-ZCS buck converter are presented, and detailed power loss analysis and some simulation results are also included. Finally, experimental results based on a 200-W prototype are provided to verify the theory and design of the proposed converter.

Equivalent Circuit Design of 2.4 GHz Band LTCC Bandpass Filters Using Multilayer Inter-Digital Resonators (적층 Inter-Digital 공진기를 이용한 2.4 GHz 대역 LTCC 대역통과 여파기의 등가회로 설계)

  • Sung Gyu-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.78-83
    • /
    • 2005
  • LTCC filters have been widely used to wireless terminals. They generally adopt the multilayer structure. Some of multilayer LTCC filters are made of symmetrical parallel-coupled lines and anti-symmetrical parallel-coupled lines to reduce the length of resonators. The equivalent circuit of parallel-coupled lines was analyzed and applied to bandpass filters using multilayer parallel-coupled line resonators. The three-pole bandpass filter with the center frequency of 2.45 GHz is designed by using the proposed equivalent circuit and the measured results have good agreement with the design results.

Design of Asymmetrical Coupled Microstrip BandPass Filter on Composite Dielectric Substrate (복합 유전체기판상에 비대칭 결합 마이크로스트립 대역통과필터의 설계)

  • Kim Ik-Soo;Moon Seung-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1A
    • /
    • pp.77-83
    • /
    • 2004
  • Parallel coupled microstrip bandpass filter is widely used in microwave circuits. But this filter limits the filter applications because of the narrow bandwidth and the spurious passband at twice the basic passband frequency. In order to solve this problem, a method of the asymmetrical coupled microstrip lines on composite dielectric substrate is presented. Closed form method is used to analyze the asymmetrical coupled microstrip lines on composite dielectric substrate. An experimental filter is fabricated over $33\%$ bandwidth centered at 9GHz. Compared with the filter on a single substrate, this filter on composite substrate shows improvement of the spurious passband.

Analysis and Modeling of Wireless Power Transfer Systems using Magnetically Coupled Resonator Scheme with Relay Coils (릴레이 코일을 포함한 자기 공명 방식 무선 전력 전송 시스템의 분석 및 모델링)

  • Park, Hee-Su;Kwon, Min-Sung;Kim, Min-Ji;Park, Hyeon-Min;Ku, Hyun-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.69-78
    • /
    • 2014
  • In this paper, characteristics of wireless power transfer (WPT) systems using magnetically coupled resonance scheme with relay coils are investigated and modeled. Especially, asymmetric frequency splitting characteristics in over-coupled region of WPT with relays are measured and accurately modeled. Transmitter, receiver, and relay coils are modeled with R, L, C equivalent circuits. Using these circuit models and mutual inductances between coils, a WPT system is described with a linear matrix equation. For under-coupled region, a matrix is simplified considering only mutual inductances between adjacent coils. An analytical transfer characteristic of WPT system vs. distance is extracted using an inverse matrix that is acquired by Gauss elimination method for the simplified matrix. For over-coupled region, a matrix considering mutual inductances between non-adjacent coils is used to predict a frequency splitting characteristics accurately. A 6.3MHz WPT system with relay coils is implemented and measured. An accuracy of the model is investigated by comparing the output of the model with the measured results.

Novel Lumped Element Backward Directional Couplers Based on the Parallel Coupled-Line Theory (평행 결합선로 이론에 근거한 새로운 집중 소자형 방향성 결합기)

  • 박준석;송택영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1036-1043
    • /
    • 2003
  • In this paper, novel lumped equivalent circuits for a conventional parallel directional coupler are proposed. This novel equivalent circuits only have self inductance and self capacitance, so we can design exact lumped equivalent circuit. The equivalent circuit and design formula for the presented lumped element coupler is derived based on the even- and odd-mode properties of a parallel-coupled line. By using the derived design formula, we have designed the 3 dB and 10 dB lumped element directional couplers at the center frequency of 100 MHz and 2 GHz, respectively a chip type directional coupler has been designed with multilayer configurations by employing commercial EM simulator. Designed chip-type directional couplers have a 3 dB-coupling value at the center frequency of 2 GHz and fabricated lumped directional coupler on fr4 organic substrate has a 3 dB, 10 dB-coupling values at the center frequency of 100 MHz. Excellent agreements between simulation results and measurement results on the designed directional couplers show the validity of this paper. Furthermore, in order to adapt to multi-layer process such as Low Temperature Cofired Ceramic (LTCC), chip-type lumped element couplers have been designed by using this method.

Design of Coupling and Rectifying Circuit for Monitoring of Transmitting Power of Maritime VHF Modem (해상 VHF 모뎀의 송신전력 모니터링을 위한 결합기 및 정류회로 설계)

  • Kim, Seung-Geun;Sung, So-Young;Lim, Young-Kon;Park, Dong-Kook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2642-2648
    • /
    • 2010
  • The design of coupling and rectifying circuits for the maritime VHF digital modem is investigated in this paper. To monitor the transmitting power of the modem, a directional coupler which is used to extract a small fraction of the transmitter signal power, and a rectifying circuit which make DC voltage proportional to the coupled rf power are designed and fabricated. The parallel-coupled line coupler with directivity of above 25 dB at 160 MHz bands is designed and it is shown that the output voltage of the rectifying circuit is linearly changing from 0.85 V to 1.6 V when the transmitting power of the modem is varying from 1 W to 25 W. The proposed coupler and rectifying circuits are expected to be suitable for maritime VHF digital modem.

Compact and Wideband Coupled-Line 3-dB Ring Hybrids (Coupled Line으로 구성된 작고 넓은 대역폭을 가지는 3-dB Ring Hybrids)

  • Ahn, Hee-Ran;Kim, Jung-Joon;Kim, Bum-Man
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.862-877
    • /
    • 2008
  • In this paper, two types of wideband 3-dB ring hybrids are compared and discussed to show the ring hybrid with a set of coupled-line sections better. However, the better one still has a realization problem that perfect matching can be achieved only with -3 dB coupling power. To solve the problem, a set of coupled-line sections with two shorts is synthesized using one- and two-port equivalent circuits and design equations are derived to have perfect matching, regardless of the coupling power. Based on the design equations, a modified ${\Pi}-type$ of transmission-line equivalent circuit is newly suggested. It consists of coupled-line sections with two shorts and two open stubs and can be used to reduce a transmission-line section, especially when its electrical length is greater than ${\pi}$. Therefore, the $3\;{\lambda}/4$ transmission-line section of a conventional ring hybrid can be reduced to less than ${\pi}/2$. To verify the modified ${\Pi}-type$ of transmission- line equivalent circuit, two kinds of simulations are carried out; one is fixing the electrical length of the coupled-line sections and the other fixing its coupling coefficient. The simulation results show that the bandwidths of resulting small transmission lines are strongly dependent on the coupling power. Using modified and conventional ${\Pi}-types$ of transmission-line equivalent circuits, a small ring hybrid is built and named a compact wideband coupled-line ring hybrid, due to the fact that a set of coupled-line sections is included. One of compact ring hybrids is compared with a conventional ring hybrid and the compared results demonstrate that the bandwidth of a proposed compact ring hybrid is much wider, in spite of being more than three times smaller in size. To test the compact ring hybrids, a microstrip compact ring hybrid, whose total transmission-line length is $220^{\circ}$, is fabricated and measured. The measured power divisions($S_{21}$, $S_{41}$, $S_{23}$ and $S_{43}$) are -2.78 dB, -3.34 dB, -2.8 dB and -3.2 dB, respectively at a design center frequency of 2 GHz, matching and isolation less than -20 dB in more than 20 % fractional bandwidth.