• Title/Summary/Keyword: Coupled Test

Search Result 834, Processing Time 0.022 seconds

Performance Evaluation of OGS-FLAC Simulator for Coupled Thermal-Hydrological-Mechanical Analysis (열-수리-역학적 연계해석을 위한 OGS-FLAC 시뮬레이터의 성능 평가)

  • Park, Dohyun;Park, Chan-Hee
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.144-159
    • /
    • 2022
  • The present study developed a sequential approach-based numerical simulator for modeling coupled thermal-hydrological-mechanical (THM) processes in the ground and investigated the computational performance of the coupling analysis algorithm. The present sequential approach linked the two different solvers: an open-source numerical code, OpenGeoSys for solving the thermal and hydrological processes in porous media and a commercial code, FLAC3D for solving the geomechanical response of the ground. A benchmark test of the developed simulator was carried out using a THM problem where an analytical solution is given. The benchmark problem involves the coupled behavior (variations in temperature, pore pressure, stress, and deformation with time) of a fully saturated porous medium which is subject to a point heat source. The results of the analytical solution and numerical simulation were compared and the validity of the numerical simulator was investigated.

An Experimental Study on the Effect of Malfunctioning of Drainage System on NATM Tunnel Linings (NATM 터널의 배수시스템 수리기능저하가 터널 라이닝에 미치는 영향)

  • Shin, Jong-Ho;Kwon, Oh-Yeob;Shin, Yong-Suk;Yang, Yu-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.77-84
    • /
    • 2007
  • One of the most sensitive design specifications to be considered is infiltration and external pore-water pressures on underground structure construction. Development of pore-water pressure may accelerate leakage and consequently cause deterioration of the lining. In this paper, the development of pore-water pressure due to malfunctioning of drainage system and its potential effect on the linings are investigated using physical model tests. The deterioration procedure was simulated by controlling both permeability and flow rate. Development of pore-water pressure was monitored on the lining using pore pressure measurement cells. Test results identified the mechanism of pore-water pressure development on the tunnel lining. In addition, they showed that controlling flow rate is more effective method fur simulating deterioration procedure than permeability control. The laboratory model tests were reproduced using coupled numerical method, and showed that the effect of deterioration of drainage system can be theoretically expected using coupled numerical modeling method.

Benchmark Numerical Simulation on the Coupled Behavior of the Ground around a Point Heat Source Using the TOUGH-FLAC Approach (TOUGH-FLAC 기법을 이용한 점열원 주변지반의 복합거동에 대한 벤치마크 수치모사)

  • Dohyun Park
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.127-142
    • /
    • 2024
  • The robustness of a numerical method means that its computational performance is maintained under various modeling conditions. New numerical methods or codes need to be assessed for robustness through benchmark testing. The TOUGH-FLAC modeling approach has been applied to various fields such as subsurface carbon dioxide storage, geological disposal of spent nuclear fuel, and geothermal development both domestically and internationally, and the modeling validity has been examined by comparing the results with experimental measurements and other numerical codes. In the present study, a benchmark test of the TOUGH-FLAC approach was performed based on a coupled thermal-hydro-mechanical behavior problem with an analytical solution. The analytical solution is related to the temperature, pore water pressure, and mechanical behavior of a fully saturated porous medium that is subjected to a point heat source. The robustness of the TOUGH-FLAC approach was evaluated by comparing the analytical solution with the results of numerical simulation. Additionally, the effects of thermal-hydro-mechanical coupling terms, fluid phase change, and timestep on the computation of coupled behavior were investigated.

On validation of fully coupled behavior of porous media using centrifuge test results

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.37-65
    • /
    • 2015
  • Modeling and simulation of mechanical response of infrastructure object, solids and structures, relies on the use of computational models to foretell the state of a physical system under conditions for which such computational model has not been validated. Verification and Validation (V&V) procedures are the primary means of assessing accuracy, building confidence and credibility in modeling and computational simulations of behavior of those infrastructure objects. Validation is the process of determining a degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. It is mainly a physics issue and provides evidence that the correct model is solved (Oberkampf et al. 2002). Our primary interest is in modeling and simulating behavior of porous particulate media that is fully saturated with pore fluid, including cyclic mobility and liquefaction. Fully saturated soils undergoing dynamic shaking fall in this category. Verification modeling and simulation of fully saturated porous soils is addressed in more detail by (Tasiopoulou et al. 2014), and in this paper we address validation. A set of centrifuge experiments is used for this purpose. Discussion is provided assessing the effects of scaling laws on centrifuge experiments and their influence on the validation. Available validation test are reviewed in view of first and second order phenomena and their importance to validation. For example, dynamics behavior of the system, following the dynamic time, and dissipation of the pore fluid pressures, following diffusion time, are not happening in the same time scale and those discrepancies are discussed. Laboratory tests, performed on soil that is used in centrifuge experiments, were used to calibrate material models that are then used in a validation process. Number of physical and numerical examples are used for validation and to illustrate presented discussion. In particular, it is shown that for the most part, numerical prediction of behavior, using laboratory test data to calibrate soil material model, prior to centrifuge experiments, can be validated using scaled tests. There are, of course, discrepancies, sources of which are analyzed and discussed.

Compact and Wideband Coupled-Line 3-dB Ring Hybrids (Coupled Line으로 구성된 작고 넓은 대역폭을 가지는 3-dB Ring Hybrids)

  • Ahn, Hee-Ran;Kim, Jung-Joon;Kim, Bum-Man
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.862-877
    • /
    • 2008
  • In this paper, two types of wideband 3-dB ring hybrids are compared and discussed to show the ring hybrid with a set of coupled-line sections better. However, the better one still has a realization problem that perfect matching can be achieved only with -3 dB coupling power. To solve the problem, a set of coupled-line sections with two shorts is synthesized using one- and two-port equivalent circuits and design equations are derived to have perfect matching, regardless of the coupling power. Based on the design equations, a modified ${\Pi}-type$ of transmission-line equivalent circuit is newly suggested. It consists of coupled-line sections with two shorts and two open stubs and can be used to reduce a transmission-line section, especially when its electrical length is greater than ${\pi}$. Therefore, the $3\;{\lambda}/4$ transmission-line section of a conventional ring hybrid can be reduced to less than ${\pi}/2$. To verify the modified ${\Pi}-type$ of transmission- line equivalent circuit, two kinds of simulations are carried out; one is fixing the electrical length of the coupled-line sections and the other fixing its coupling coefficient. The simulation results show that the bandwidths of resulting small transmission lines are strongly dependent on the coupling power. Using modified and conventional ${\Pi}-types$ of transmission-line equivalent circuits, a small ring hybrid is built and named a compact wideband coupled-line ring hybrid, due to the fact that a set of coupled-line sections is included. One of compact ring hybrids is compared with a conventional ring hybrid and the compared results demonstrate that the bandwidth of a proposed compact ring hybrid is much wider, in spite of being more than three times smaller in size. To test the compact ring hybrids, a microstrip compact ring hybrid, whose total transmission-line length is $220^{\circ}$, is fabricated and measured. The measured power divisions($S_{21}$, $S_{41}$, $S_{23}$ and $S_{43}$) are -2.78 dB, -3.34 dB, -2.8 dB and -3.2 dB, respectively at a design center frequency of 2 GHz, matching and isolation less than -20 dB in more than 20 % fractional bandwidth.

Reliability Assessment Criteria of Motorized Roller Conveyor (자체구동롤러 컨베이어의 신뢰성 평가기준)

  • Kim, Young-Joo;Go, Hee-Yang;Han, In-Sup;Kim, Yong Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.521-529
    • /
    • 2015
  • Owing to a reliance on imported products from Europe and Japan, the use of logistics equipment with poor energy efficiency coupled with high maintenance costs can lead to high operating costs for some domestic logistic centers. To lower their operating costs, the logistic centers use motorized roller conveyors. In order to commercialize this process, it is necessary to establish the test criteria and assess the reliability of the process. Currently, there exists no standard verification method to test the reliability of motorized roller conveyors. In this study, we propose reliability assessment criteria for a: i) reliability test, ii) environmental test, iii) safety test, and iv) lifetime test.

Numerical modelling of coupled thermo-hydro-mechanical behavior of Heater Experiment-D (HE-D) at Mont Terri rock laboratory in Switzerland (스위스 Mont Terri rock laboratory에서 수행된 암반 히터시험(HE-D)에 대한 열-수리-역학적 복합거동 수치해석)

  • Lee, Changsoo;Choi, Heui-Joo;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.242-255
    • /
    • 2020
  • The numerical simulations of Heater Experiment-D (HE-D) at the Mont Terri rock laboratory in Switzerland were performed to investigate an applicability of FLAC3D to reproduce the coupled thermo-hydro-mechanical (THM) behaviour in Opalinus Clay, as part of the DECOVLEX-2015 project Task B. To investigate the reliability of numerical simulations of the coupled behaviour using FLAC3D code, the simulation results were compared with the observations from the in-situ experiment, such as temperature at 16 sensors, pore pressure at 6 sensors, and strain at 22 measurement points. An anisotropic heat conduction model, fluid flow model, and transversely isotropic elastic model in FLAC3D successfully represented the coupled thermo-hydraulic behaviour in terms of evolution for temperature and pore pressure, however, performance of the models for mechanical behavior is not satisfactory compared with the measured strain.

Development of Thermal-Hydraulic-Mechanical Coupled Numerical Analysis Code for Complex Behavior in Jointed Rock Mass Based on Fracture Mechanics (균열 암반의 복합거동해석을 위한 열-수리-역학적으로 연계된 파괴역학 수치해석코드 개발)

  • Kim, Hyung-Mok;Park, Eui-Seob;Shen, Baotang;Synn, Joong-Ho;Kim, Taek-Kon;Lee, Seong-Cheol;Ko, Tae-Young;Lee, Hee-Suk;Lee, Jin-Moo
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.66-81
    • /
    • 2011
  • In this study, it was aimed to develop a thermal-hydraulic-mechanical coupled fracture mechanics code that models a fracture initiation, propagation and failure of underground rock mass due to thermal and hydraulic loadings. The development was based on a 2D FRACOD (Shen & Stephasson, 1993), and newly developed T-M and H-M coupled analysis modules were implemented into it. T-M coupling in FRACOD employed a fictitious heat source and time-marching method, and explicit iteration method was used in H-M coupling. The validity of developed coupled modules was verified by the comparison with the analytical result, and its applicability to the fracture initiation and propagation behavior due to temperature changes and hydraulic fracturing was confirmed by test simulations.

Dual-Coupled Inductor High Gain DC/DC Converter with Ripple Absorption Circuit

  • Yang, Jie;Yu, Dongsheng;Alkahtani, Mohammed;Yuan, Ligen;Zhou, Zhi;Zhu, Hong;Chiemeka, Maxwell
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1366-1379
    • /
    • 2019
  • High-gain DC/DC converters have become one of the key technologies for the grid-connected operation of new energy power generation, and its research provides a significant impetus for the rapid development of new energy power generation. Inspired by the transformer effect and the ripple-suppressed ability of a coupled inductor, a double-coupled inductor high gain DC/DC converter with a ripple absorption circuit is proposed in this paper. By integrating the diode-capacitor voltage multiplying unit into the quadratic Boost converter and assembling the independent inductor into the magnetic core of structure coupled inductors, the adjustable range of the voltage gain can be effectively extended and the limit on duty ratio can be avoided. In addition, the volume of the magnetic element can be reduced. Very small ripples of input current can be obtained by the ripple absorption circuit, which is composed of an auxiliary inductor and a capacitor. The leakage inductance loss can be recovered to the load in a switching period, and the switching-off voltage spikes caused by leakage inductance can be suppressed by absorption in the diode-capacitor voltage multiplying unit. On the basis of the theoretical analysis, the feasibility of the proposed converter is verified by test results obtained by simulations and an experimental prototype.

Thermomechanical Coupled Analysis of Carbon/phenolic Composite Structures in Reentry Environments (재진입 환경의 탄소/페놀릭 복합재 구조물의 열기계적 연계 해석)

  • Son, Myeong Jin;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.414-421
    • /
    • 2019
  • In this paper, thermomechanical coupled analysis of carbon/phenolic composites structures in reentry environment was performed. The interface of thermomechanical coupled analysis was constructed using commercial software. The governing equations of temperature and displacement fields were considered to simulate change of physical behavior due to pyrolysis and ablation effects. The results of thermomechanical coupled analysis were compared with the results of ablation test using arc-heated wind tunnel. Also, the structural stability of reentry capsule was analyzed using the analysis interface. The excellent ablation characteristics and thermal protection effects of the carbon/phenolic composites were confirmed and the constructed analysis interface can be effectively used to perform thermal protection system design.