• Title/Summary/Keyword: Coupled Structural-Acoustic Analysis

Search Result 32, Processing Time 0.015 seconds

Application of Hydrodynamic Pressure for Three­dimensional Earthquake Safety Analysis of Dam Intake Towers (댐 취수탑 3차원 내진안전성 평가에서의 동수압 적용방법에 관한 연구)

  • Song, Gwang-Seok;Min, Kyoung-Uk;Bea, Jungju;Lee, Jeeho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.139-147
    • /
    • 2018
  • In the present study, effective hydrodynamic pressure modeling methods for three-dimensional earthquake safety analysis of a dam intake tower structure are investigated. Time history analysis results using the Westergaard added mass and Chopra added mass methods are compared with the one by the CASI (Coupled Acoustic Structural Interaction) method, which is accepted as giving almost exact solutions, to evaluate the difference in displacement response, stress and dynamic eccentricity. The 3D time history analysis of a realistic intake tower, which has the standard geometry widely used in Korea, shows that the Chopra added mass method gives similar results in displacement and stress and less conservative results in dynamic eccentricity to CASI ones, while the Westergaard added mass yields much more conservative results in all measures. This study suggests to use the CASI method directly for three-dimensional earthquake safety analysis of a dam intake tower, if computationally possible.

Numerical Simulation of Ground Expansion Induced by Pulse Discharge Technology (펄스 방전 기술에 의한 지반 확공 현상 수치해석 모사)

  • Park, Hyun-Ku;Lee, Seung-Rae;Kim, Seon-Ju;Cho, Gyu-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.25-34
    • /
    • 2010
  • In the present paper, a numerical study was carried out to simulate ground expansion induced by an application of pulse discharge technology. Based on laboratory pulse discharge tests, the characteristics of shockwave were investigated, and then the laboratory tests were numerical1y simulated using underwater explosion model implemented in a coupled acoustic-structural finite element analysis. In addition, for clayey soils, the expansion of ground was also studied using soil properties obtained from empirical correlations with SPT N values. It was found that the calculation results well agreed with the field test results.