• Title/Summary/Keyword: Coupled Plate Structure

Search Result 98, Processing Time 0.027 seconds

Visualization of Sound Field of Plate-Cavity Coupled System by Experimental Method (실험적 방법에 의한 평판-공동 연성계의 음장 가시화)

  • 김시문;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.662-668
    • /
    • 1997
  • Since the structural impedance is much greater than that of medium in the most cases, we often assume that the structure is rigid and that the structural vibration is independent of medium, i.e. we usually calculate the vibration of the structure first, and then obtain the radiation sound from it. This assumption is no longer satisfied when the structural stiffness is small or the fluid impedance is comparable to it. This situation often happens in underwater acoustics. Although many researchers have studied about structural-fluid coupling, we have difficulties in solving the problem analytically. Therefore the numerical method using powerful computation leads us to obtain the various coupling problem. To understand the physical coupling phenomena, visualization of sound field by a geometrically simple system(plate-cavity coupled system) is performed experimentally. Acoustic holographic method is used to estimate sound field.

  • PDF

Liquid boundary effect on free vibration of an annular plate coupled with a liquid

  • Kyeong-Hoon Jeong
    • Coupled systems mechanics
    • /
    • v.12 no.2
    • /
    • pp.127-149
    • /
    • 2023
  • A theoretical method is developed to analyze the free vibration of an elastic annular plate in contact with an ideal liquid. The displacement potential functions of the contained liquid are expressed as a combination of the Bessel functions that satisfy the Laplace equation and the liquid boundary conditions. The compatibility condition along the interface between the annular plate and the contained liquid is taken into account to consider the fluid-structure coupling. The dynamic displacement of the wet annular plate is assumed to be a combination of dry eigenfunctions, allowing for prediction of the natural frequencies using the Rayleigh-Ritz method. The study investigates the effect of radial liquid boundary conditions on the natural frequencies of the wet annular plate, considering four types of liquid bounding: outer container bounded, outer and inner bounded, inner bounded, and radially unbounded. The proposed theoretical method is validated by comparing the predicted wet natural frequencies with those obtained from finite element analysis, showing excellent accuracy. The results indicate that the radial liquid bounding effect on the natural frequencies is negligible for the axisymmetric vibrational mode, but relatively significant for the mode with one nodal diameter (n =1) and no nodal circle (m' = 0). Furthermore, the study reveals that the wet natural frequencies are the largest for the plate with an inner bounded cylinder among the radial liquid boundary cases, regardless of the vibration mode.

Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.;Mehar, Kulmani
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.629-639
    • /
    • 2018
  • In this paper, the vibroacoustic responses of baffled laminated composite sandwich flat panel structure under the influence of harmonic excitation are studied numerically using a novel higher-order coupled finite-boundary element model. A numerical scheme for the vibrating plate has been developed in the frame work of the higher-order mid-plane kinematics and the eigen frequencies are obtained by employing suitable finite element steps. The acoustic responses are then computed by solving the Helmholtz wave equation using boundary element method coupled with the structural finite elements. The proposed scheme has been implemented via an own MATLAB base code to compute the desired responses. The validity of the present model is established from the conformance of the current natural frequencies and the radiated sound power with the available benchmark solutions. The model is further utilized to scrutinize the influence of core-to-face thickness ratio, modular ratio, lamination scheme and the support condition on the sound radiation characteristics of the vibrating sandwich flats panel. It can be concluded that the present scheme is not only accurate but also efficient and simple in providing solutions of the coupled vibroacoustic response of laminated composite sandwich plates.

Free Vibration Analysis of Two Identical Rectangular Plates Coupled with Fluid (유체로 연성된 동일한 두 직사각 평판의 고유진동 해석)

  • Jeong, Kyeong-Hoon;Lee, Seong-Cheol;Yoo, Gye-Hyoung
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.8-15
    • /
    • 2002
  • In order to investigate the vibration characteristics of fluid-structure interaction problem, we modeled two identical rectangular plates coupled with fluid. A commercial computer code, ANSYS was used to perform finite element analysis and FEM solutions were compared with the experimental results to verify the finite element model. As a result, comparison of FEM and experiment showed good agreement, and the transverse vibration modes, in-phase and out-of-Phase, were observed alternately in the fluid-coupled system. The effect of fluid gap size on the fluid-coupled natural frequency were investigated. It was shown that the mode numbers increased, the normalized natural frequencies monotonically increased. And it was also found that an increase of the fluid gap reduced the coupled natural frequencies for the in-phase modes but increased the coupled natural frequencies for the out-of phase modes, and eventually converged to the results of an infinite fluid gap.

Investigation for Change of Pump's Vibration Modes on Oil Tank (대형 tank 구조물 개선에 따른 진동변화 고찰)

  • Yang, Kyeong-Hyeon;Cho, Cheul-Whan;Cho, Sung-Tai;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.36-40
    • /
    • 2007
  • It uses a tank to store, purify and feed lube oil in power plants, which is made by steel plate. Several pumps to feed lube oil are installed on the top plate of the oil tank. In this case if pumps on the top plate are removed or added, the dynamic characteristics of the structure will be changed. In this paper, we present that we analyze in detail the similar case with a finite element model for tank & pump structure coupled with oil and that we set plan to change mode shapes on the top plate of the tank.

  • PDF

A Coupled Analysis of Smart Plate Under Electro-Mechanical Loading Using Enhanced Lower-Order Shear Deformation Theory (개선된 저차 전단 변형 이론을 이용한 전기, 기계 하중을 받는 스마트 복합재 구조물의 연성 해석)

  • Oh, Jin-Ho;Cho, Maeng-Hyo;Kim, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.121-128
    • /
    • 2007
  • Enhanced lower order shear deformation theory is developed in this study. Generally, lower order theories are not adequate to predict accurate deformation and stress distribution through the thickness of laminated plate. For the accurate prediction of detailed stress and deformation distributions through the thickness, higher order zigzag theories have been proposed. However, in most cases, simplified zigzag higher order theory requires $C_1$, shape functions in finite element implementation. In commercial FE softwares, $C_1$, shape functions are not so common in plate and shell analysis. Thus zigzag theories are useful for the highly accurate prediction of thick composite behaviors but they are not practical in the sense that they cannot be used conveniently in the commercial package. In practice, iso-parametric $C_0$ plate model is the standard model for the analysis and design of composite laminated plates and shells. Thus in the present study, an enhanced lower order shear deformation theory is developed. The proposed theory requires only $C_0$ shape function in FE implementation. The least-squared energy error between the lower order theory and higher order theory is minimized. An enhanced lower order shear deformation theory(ELSDT) in this paper is proposed for smart structure under complex loadings. The ELSDT is constructed by the strain energy transformation and fully coupled mechanical, electric loading cases are studied. In order to obtain accurate prediction, zigzag in-plane displacement and transverse normal deformation are considered in the deformation Held. In the electric behavior, open-circuit condition as well as closed-circuit condition is considered. Through the numerous examples, the accuracy and robustness of present theory are demonstrated.

Coupled Vibration Analysis of Cylindrical Fluid-storage Tanks with a Baffle (배플을 갖는 원통형 유체저장 탱크의 연성진동해석)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.96-104
    • /
    • 2005
  • The coupled vibration characteristics for the fluid-structure interaction systems are investigated through the finite element method. The present paper is focused on vibration characteristics of the cylindrical fluid-storage tank with a baffle. The tank is partially filled with an inviscid and irrotational fluid having a free surface. A baffle is assumed here to have the shape of a thin annular plate and a conical shell, attached to the cylindrical tank and positioned below the fluid surface. The liquid domain is limited by a rigid flat bottom. As the effect of free surface waves is taken into account in the analysis, the bulging and sloshing modes are studied. To demonstrate the validity of present results, they are compared with the published ones. The effect of positions and inner-to-outer radius ratio of annular baffle and setting angles of conical baffle on coupled vibration characteristics is investigated.

Free Vibration Analysis of Perforated Plate Submerged in Fluid

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1323-1338
    • /
    • 2006
  • An analytical method to estimate the coupled frequencies of the circular plate submerged in fluid is developed using the finite Fourier-Bessel series expansion and Rayleigh-Ritz method. To verify the validity of the analytical method developed, finite element method is used and the frequency comparisons between them are found to be in good agreement. For the perforated plate submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the plate and the fluid at the same time. This necessitates the use of solid plate with equivalent material properties. Unfortunately the effective elastic constants suggested by the ASME code are found to be not valid for the modal analysis. Therefore in this study the equivalent material properties of perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies.

A Free Vibration Analysis of Sound-Structure Interaction Plate (구조-음향 연성평판의 자유진동해석)

  • Lee, Dong-Ick;O, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2546-2554
    • /
    • 1996
  • In order to investigate the characteristics of sound-structure interaction problems, we modeled a rectangular cavity and the flexible wall of the cavity. Because the governing equations of motion are coupled through velocity terms, we could redefine them using the velocity potential. We calculated the natural frequencies of plate using orthogonal polynomial functions which satisfy the boundary conditions in the Rayleigh-Ritz Method. As the result, comparisons of theory and experiment show good agreement. and using orthogonal polynomial functions which satisfy the boundary conditions in the Rayleigh-Ritz method show useful method for sound-structure interaction problems too.

An Analysis of the Farm Silo Supported by Ground (지반과 구조물 사이의 상호작용을 고려한 농업용 사이로의 해석에 관한 연구 (III) - 제3보 상대강성의 영향 -)

  • 조진구;조형영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.2
    • /
    • pp.39-52
    • /
    • 1987
  • This study was to investigate the effects of soil-structure relative stiffness on the structural characteristics of the cylindrical tank supported by soil. A standard example model of the farm silo rested on the Winkler's subsoil model was used for the analysis of soil-structure coupled system. In this paper, Winkler's constants 4,15 and l00kg/cm$^2$/cm were considered and the bottom plate thicknesses of the farm silo 20, 30, 50,100 and 150cm were adopted. For the given model the effects of bottom plate thickness were the most conspicuous at weakest Winkler's constant 4kg/ cm$^2$/cm. While when Winkler's constant is l00kg/cm$^2$/cm, the effect of the bottom plate thickness is almost negligible. On the other hand, when the bottom plate thickness is more than 100cm, the effects of elastic foundation were aknost disappeared. In design practice, it is hoped that the thicknesses of bottom plate should be determined reasonably because of it's considerable effect on the structural characteristics as the lOOcm thickness of bottom plate will not be practical value in usual sites.

  • PDF