• Title/Summary/Keyword: Counter-rotating

Search Result 173, Processing Time 0.011 seconds

Experimental Study on the Aerodynamic Characteristics of a Counter-Rotating Axial Fan (엇회전식 축류홴의 공력 특성에 관한 실험적 연구)

  • Choi, Jin-Yong;Cho, Lee-Sang;Cho, Jin-Soo;Won, Eu-Pil
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.441-446
    • /
    • 2000
  • The experiments of the Aerodynamic characteristics of a counter-rotating axial fan were carried out. The performance tests of a single and a counter-rotating axial fan were carried out based on the Korean Standard Testing Methods for Turbo-fans and Blowers(KS B 6311). The performances of single and counter-rotating axial fans were obtained and compared with each other. The flow fields of a counter-rotating axial fan at the peak efficiency point were measured using a five-hole probe. As a result, compared with the performance of a single-rotating axial fan, that of a counter-rotating axial fan was superior. And it is confirmed that most of the swirl flow generated by the front rotor was eliminated by the rear rotor.

  • PDF

Numerical and Experimental Analyses of the Aerodynamic Characteristics of a Counter Rotating Axial Fan (엇회전식 축류홴의 공력 특성에 관한 전산 해석 및 실험)

  • Cho, Jin-Soo;Won, Yu-Phil;Lee, Moon-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.325-337
    • /
    • 2000
  • A study was done on the numerical and experimental analyses of the aerodynamic characteristics of a counter rotating axial fan. The numerical analysis uses the frequency domain panel method developed for the aerodynamic analysis of interacting rotating systems, which is based on the unsteady lifting surface panel method. Each stage of interaction involves the solution of an isolated rotor, the interaction being done through the Fourier transform of the induced velocity field. Numerical results showed good agreements with other experimental data for single and counter rotating propeller systems. And they were compared with the experimental results of the counter rotating axial fan studied in the present paper. The performance test was carried out based on the Korean Standard (KS B 6311). It was focused on the relative efficiency increase of a counter rotating system for a single rotating one, and effects of the axial distance between the front and rear rotors on overall fan performances were investigated. As a result, it was shown that the counter rotating axial fan has the efficiency 14% higher than the single rotating one at peak efficiency points.

Prediction for the Performance and Wakes of a Counter-Rotating Wind Turbine Using the Vortex Lattice Method (와류격자기법을 이용한 Counter-Rotating 풍력 발전기의 성능 및 후류 해석 연구)

  • Lee, Seungmin;Son, Eunkuk;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.40.2-40.2
    • /
    • 2011
  • A Counter-rotating wind turbine is one of the new concepts that are proposed to increase the performance of a wind turbine. It has two rotors rotating in the same axis, and it is known that its power coefficient can reach to 0.64 in the ideal case. While the BEMT is widely used to analyze the aerodynamic performance of wind turbines, the analysis of the counter-rotating wind turbine by using it is limited due to the aerodynamic interaction between the two rotors. In this study, the vortex lattice method is used to consider the effect of the front rotor on the rear rotor of the counter-rotating wind turbine and calculate the aerodynamic performance of it. The power and thrust sharing in the two rotors of the counter-rotating wind turbine are predicted and the total power and thrust are compared with that of a single rotor. Moreover, the wake convection and expansion rate is also compared with that of a single rotor.

  • PDF

Numerical analyses on the Aerodynamic Characteristics of a Counter-rotating Axial Flow Fan (고성능 엇회전식 축류팬의 공력특성에 대한 전산해석)

  • Cho, Leesang;Cho, Jinsoo
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.37-40
    • /
    • 2015
  • Numerical analyses on the aerodynamic characteristics of a counter rotating axial flow fan is carried out using the frequency domain panel method. Front rotor and rear rotor blades of a counter rotating axial fan are designed by using the simplified meridional flow analysis method with the radial equilibrium equation and the free vortex design condition, according to design requirements. Performance characteristics of a counter rotating axial flow fan are estimated for the variation of design parameters such as the hub to tip ratio, the taper ratio and the solidity. Pressure losses were higher at leading edge and hub region of rotor blades. Characteristic curve of the counter rotating fan was overpredicted without consideration of viscous effect.

Design and Performance Evaluation of a 10kW Scale Counter-Rotating Tidal Turbine (10kW급 상반전 조류터빈의 설계와 성능에 관한 연구)

  • Hoang, Anh Dung;Yang, Chang-Jo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.47-53
    • /
    • 2014
  • This paper aims to present the design and performance evaluation of a counter-rotating tidal turbine using CFD and to compare its performance with single rotor. The device scale is 10kW and the rotating part consists of two rotors which rotate in opposite direction. Compared with conventional single rotor, the counter-rotating system shows higher power efficiency at high stream velocity but lower efficiency at low stream velocity. The added counter-rotated rotor together helps improve the energy absorption capacity but has influence on the upstream rotor that reduces its performance. In terms of power capture, the designed counter-rotating tidal turbine is more advantageous in high speed tidal condition.

Experimental Study on the Aerodynamic Characteristics of a Counter-Rotating Axial Flow Fan (엇회전식 축류 펜의 공력 특성에 관한 실험적 연구)

  • Choe, Jin-Yong;Jo, Lee-Sang;Jo, Jin-Su;Won, Yu-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.201-210
    • /
    • 2002
  • Experiments were done for performance and flow characteristics of a counter-rotating axial flow fan. Performance curves of a counter-rotating axial flow fan were obtained and compared by varying the blade pitch angles. The fan characteristic curves were obtained following the Korean Standard Testing Methods for Turbo Fans and Blowers (KS B 6311). The fan flow characteristics were measured using a five-hole probe and a slanted hot-wire. The velocity profiles between the hub and tip of the fans were measured and analyzed at the peak efficiency point. The peak efficiency of the counter-rotating axial flow fan was improved about 15% respectively, compared with the single rotating axial fan. The single rotating axial flow fan showed relatively law efficiency due to the swirl velocities behind rotor exit which produced pressure losses. The counter-rotating axial flow fan showed that the swirl velocity generated by the front rotor was eliminated by the rear rotor and the associated dynamic pressure is recovered in the from of the static pressure rise.

Experimental Study on the Unsteady Flow Characteristics of the Counter-Rotating Axial Flow Fan (엇회전식 축류팬의 비정상 유동특성에 관한 실험적 연구)

  • Cho, Lee-Sang;Choi, Hyun-Min;Kang, Jeong-Seek;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.305-310
    • /
    • 2007
  • For the understanding of the complex flow characteristics in the counter-rotating axial flow fan, it is necessary to investigate the three-dimensional unsteady flow fields in the counter-rotating axial flow fan. This information is also essential for the prediction of the aerodynamic and acoustical characteristics of the counter-rotating axial flow fan. Experimental study on the three-dimensional unsteady flow in the counter-rotating axial flow fan is carried out at the design point(operating condition). Three-dimensional unsteady flow fields in the counter rotating axial flow fan are measured at the cross-sectional planes of the upstream and downstream of each rotor using the $45^{\circ}$ inclined hot-wire. Three-dimensional unsteady flow fields in the counter-rotating axial flow such as the wake, the tip vortex and the tip leakage flow are shown the form of the velocity vectors and the velocity contours.

  • PDF

Numerical Study of Internal Flow in Twin Screw Extruder and Its Mixing Performance Analysis (이축 스크루 압출기내 유동의 수치 해석과 혼합 성능 분석)

  • Kim, Nak-Soo;Kim, Hong-Bum;Lee, Jae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.32-41
    • /
    • 2006
  • We analyzed the non-Newtonian and non-isothermal flow in the melt conveying zone in co-rotating and counter-rotating screw extruder system with the commercial code, STAR-CD, and compared the mixing performance with respect to screw speed and rotating direction. The viscosity of fluid was described by power-law model. The dynamics of mixing was studied numerically by tracking the motion of particles in a twin screw extruder system. The extent of mixing was characterized in terms of the residence time distribution and average strain. The results showed that high screw speed decreases the residence time but increases the shear rate. Therefore higher screw speed increases the strain and has better mixing performance. Counter-rotating screw extruder system and co-rotating screw extruder has the similar shear rate with the same screw speed in spite of different rotating direction. However, the counter-rotating screw has good mixing performance, which is resulted from longer residence time than that of co-rotating screw extruder.

A Numerical Investigation of the Main Rotor Tip-vortex and Counter-rotating Vortex during Hovering Flight (주로터 제자리 비행 시 익단 와류와 Counter-rotating Vortex의 수치적 관찰)

  • Jun, Jonghyuk;Chung, In Jae;Lee, Duck Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.761-769
    • /
    • 2013
  • Effects of helicopter wakes on helicopter aerodynamics are serious, but the wake configuration is very complicated and hard to predict. The purpose of this study is the detailed observation of wake using numerical methods. Vortex lattice method and freewake method are used to track the vortices in the wake. In this paper, the wake configuration is observed during hovering flight. In the case of hovering flight at the moderate thrust level, besides tip vortex, counter-rotating vortex can be observed at the inboard part of blade. When the vortices move downward, tip vortex and counter-rotating vortex get close and influence to each other. Therefore, vortices are highly distorted due to their own instability.

Design and Performance Evaluation of a 10kW Scale Counter-Rotating Wind Turbine Rotor (10kW급 상반전 풍력터빈 로터의 설계와 성능 평가에 관한 연구)

  • Hoang, Anh Dung;Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.104-112
    • /
    • 2014
  • The counter-rotating approach on wind turbine has been recently put in interest for its certain advantages in both design and performance. This paper introduces a study on a counter-rotating wind turbine designed and modeled using NREL airfoils S822 and S823. The aims of the study is to evaluate and discover the performance of the counter-rotating system, and compares to that of single rotor turbine of same design using numerical simulation. The results show higher performance of the counter-rotating system compared with single rotor case at TSR 3 to 5 but lower performance at higher TSR. This is due to the interaction between upstream and downstream rotors. Thus, the counter-rotating turbine is more efficient at low rotor rotational speed.