• 제목/요약/키워드: Counter-flow type

검색결과 107건 처리시간 0.022초

래크바형 수문권양기에 적용된 정유압장치의 컴퓨터 시뮬레이션에 의한 작동특성 연구 (Computer Simulation Study of the Hydrostatic Transmission Applied to the Rack-Bar Type Sluice Gate)

  • 이성래
    • 유공압시스템학회논문집
    • /
    • 제6권2호
    • /
    • pp.14-21
    • /
    • 2009
  • The typical hydraulic hoisting system of the rack-bar type sluice gate is composed of a hydraulic supply unit using an uni-directional pump, a direction control valve, a hydraulic motor, a counter balance valve, and flow control valves. Here, the hydrostatic transmission is applied to the hoisting system of rack-bar type sluice gate to simplify the operation of gate such that the upward and downward direction of gate is simply controlled by the direction of pump rotation. The new hydraulic hoisting system is composed of a bi-directional pump, a hydraulic motor, two counter balance valves, two check valves, two pilot-operated check valves, two relief valves and a shuttle valve. The characteristics of a suggested system are analyzed by computer simulations.

  • PDF

정유압식 래크바형 수문권양기의 개발 (Development of the Rack-Bar Type Sluice Gate Applying the Hydrostatic Transmission)

  • 이성래
    • 유공압시스템학회논문집
    • /
    • 제7권4호
    • /
    • pp.15-22
    • /
    • 2010
  • The typical hydraulic hoisting system of the rack-bar type sluice gate is composed of a hydraulic supply unit using an uni-directional pump, a direction control valve, a hydraulic motor, a counter balance valve, and flow control valves. Here, the hydrostatic transmission is applied to the hoisting system of rack-bar type sluice gate to simplify the operation of gate such that the upward and downward direction of gate is simply controlled by the direction of pump rotation. The new hydraulic hoisting system is composed of a bi-directional pump, a hydraulic motor, a counter balance valve, two check valves, two pilot-operated check valves, two relief valves and a shuttle valve. The characteristics of a suggested system are analyzed by computer simulations and experiments.

  • PDF

정유압식 래크바형 수문권양기의 개발 (Development of the Rack-Bar Type Sluice Gate Applying the Hydrostatic Transmission)

  • 이성래
    • 유공압시스템학회:학술대회논문집
    • /
    • 유공압시스템학회 2010년도 춘계학술대회
    • /
    • pp.86-92
    • /
    • 2010
  • The typical hydraulic hoisting system of the rack-bar type sluice gate is composed of a hydraulic supply unit using an uni-directional pump, a direction control valve, a hydraulic motor, a counter balance valve, and flow control valves. Here, the hydrostatic transmission is applied to the hoisting system of rack-bar type sluice gate to simplify the operation of gate such that the upward and downward direction of gate is simply controlled by the direction of pump rotation. The new hydraulic hoisting system is composed of a bi-directional pump, a hydraulic motor, a counter balance valve, two check valves, two pilot-operated check valves, two relief valves and a shuttle valve. The characteristics of a suggested system are analyzed by computer simulations and experiments.

  • PDF

수경재배 온실의 양액냉각시스템 개발 (Development of Nutrient Solution Cooling System in Hydroponic Greenhouse)

  • 남상운;김문기
    • 한국농공학회지
    • /
    • 제36권3호
    • /
    • pp.113-121
    • /
    • 1994
  • Since it is difficult to expect the normal production of plants in greenhouses during hot summer season in Korea, certain provisions on the control of extreme environmental factors in summer should be considered for the year-round cultivation in greenhouses. This study was carried out to find a method to suppress the temperature rising of nutrient solution by cooling, which is able to contribute to the improvement of the plant growth environment in hydroponic greenhouse during hot summer season. A mechanical cooling system using the counter flow type with double pipe was developed for cooling the nutrient solution efficiently. Also the heat transfer characteristics of the system was analysed experimentally and theoretically, and compared with the existing cooling systems of nutrient solution. The cooling capacities of three different Systems, which used polyethylene tube in solution tank, stainless tube in solution tank, and the counter flow type with double pipe, were evaluated. The performance of each cooling system was about 41 %, 70% and 81 % of design cooling load in hydroponic greenhouse of 1 ,000m$^2$ on the conditions that the flow rate of ground water was 2m$^3$/hr and the temperature difference between two liquids was 10 ˚C According to the results analysed as above, the cooling system was found to have a satisfactory cooling capability for regions where ground water supply is available. Fer the other regions where ground water supply is restricted, more efficient cooling System should be developed.

  • PDF

대기경계층 내에 놓인 자유단 원주의 형상비가 후류유동에 미치는 영향에 관한 연구 (Effect of cylinder aspect ratio on wake structure behind a finite circular cylinder located in an atmospheric boundary layer)

  • 박철우;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.247-252
    • /
    • 2001
  • The flow around free end of a finite circular cylinder(FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wake structures behind a 2-D cylinder and a finite cylinder located in a uniform flow were also measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency is decreased and the vortex formation length is increased compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, in the region near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly established. In the wake center region, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit, compared to that of uniform flow.

  • PDF

원판형 드래그펌프내의 희박기체유동 (Rarefied Gas Flows in Spiral Channels of a Disk-Type Drag Pump)

  • 황영규;허중식
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.82-87
    • /
    • 2000
  • The direct simulation Monte Carlo (DSMC) method is applied to investigate the flow field of a disk-type drag pump. The pumping channels are cut on both sides of a rotating disk. The rotor has 10 Archimedes' spiral blades. In the present DSMC method, the variable hard sphere model is used as a molecular model, and the no time counter method is employed as a collision sampling technique. For simulation of diatomic gas flows, the Larsen-Borgnakke phenomenological model is adopted to redistribute the translational and internal energies.

  • PDF

Counter-Rotating Type Pumping Unit (Impeller Speeds in Smart Control)

  • Kanemoto, Toshiaki;Komaki, Keiichi;Katayama, Masaaki;Fujimura, Makoto
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권3호
    • /
    • pp.334-340
    • /
    • 2011
  • Turbo-pumps have weak points, such as the pumping operation is unstable on the positive slope of the head curve and/or the cavitation occurs at the low suction head. To improve simultaneously both weak points, the first author invented the unique pumping unit composed of the tandem impellers and the peculiar motor with the double rotational armatures. The front and the rear impellers are driven by the inner and the outer armatures of the motor, respectively. Both impeller speeds are automatically and smartly adjusted in response to the pumping discharge, while the rotational torques between both impellers/armatures are counter-balanced. Such speeds contribute to suppress successfully not only the unstable operation at the low discharge but also the cavitation at the high discharge, as verified with the axial flow type pumping unit in the previous paper. Continuously, this paper investigates experimentally the effects of the tandem impeller profiles on the pump performances and the rotational speeds against the discharge, using the impellers whose loads are low and/or high at the normal discharge. The worthy remarks are that (a) the unstable operation is suppressed as expected and the shut off power is scarcely large in the smart control, (b) the blade profile contributes to determine the discharge giving the maximum/minimum rotational speed where the reverse flow may incipiently appears at the front impeller inlet, (c) the tandem impeller profiles scarcely affect the rotational speeds, while the loads of the front and the rear impellers are same, but (d) the impeller with the low load must run faster and the impeller with the high load must run slower at the same discharge to take the same rotational torque, and (e) the reverse flow at the inlet and the swirling velocity component at the outlet of the front impeller with the high load require making the rotational speed of the rear impeller with low load fairly faster at the lower discharge.

냉각유로방식 변화에 따른 슬롯 막냉각에서의 유동 및 열전달 특성 (Flow and Heat Transfer Characteristics in a Slot Film Cooling with Various Flow Inlet Conditions)

  • 함진기;조형희
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.870-879
    • /
    • 2000
  • An experimental investigation is conducted to improve a slot film cooling system which can be used for the cooling of gas turbine combustor liner. The tangential slots are constructed of discrete holes with different injection types which are the parallel, vertical, and combined to the slot lip. The investigation is focused on the coolant supply systems of normal-, parallel-, and counter-flow paths to the mainstream direction. A naphthalene sublimation technique has been employed to measure the local heat/mass transfer coefficients in a slot with various injection types and coolant feeding directions. The velocity distributions at the exit of slot lip for the parallel and vertical injection types are fairly uniform with mild periodical patterns with respect to the hole positions. However, the combined injection type increases the nonuniformity of flow distribution with the period equaling twice that of hole-to-hole pitch due to splitting and merging of the ejected flows. The secondary flow at the lip exit has uniform velocity distributions for the parallel and vertical injection types, which are similar to the results of a two-dimensional slot injection. In the results of local heat/mass transfer coefficient, the best cooling performance inside the slot is obtained with the vertical injection type among the three different injection types due to the effect of jet impingement. The lateral distributions of Sh with the parallel- and counter-flow paths are more uniform than the normal flow path. The averaged Sh with the injection holes are $2{\sim}5$ times higher than that of a smooth two-dimensional slot path.

Van형 자동차의 후류구조에 대한 실험적 해석(와류 형성을 중심으로) (An experimental study on the wake structure behind a van type vehicle)

  • 성봉주;장병희
    • 오토저널
    • /
    • 제10권3호
    • /
    • pp.51-59
    • /
    • 1988
  • The wake structure behind a van type vehicle was studied experimentally with a 5-hole yawhead probe. Through an effective calibration method of the 5-hole yawhead probe, the flow properties such as velocity vector, total pressure and static pressure were obtained on two cross sections within the wake. These results combined with the surface flow visualization performed in the previous study, yielded some information about the wake structure. When the model was placed in a stream with zero yaw angle, two counter rotating vortices were observed behind the model which pull down the surface flow on each side of the model. With increasing the yaw angle, the surface flow on the windward side changed to divide the flow in two directions, one flows upward on the upper part and the other flows downward on the lower part of the windward side. Hence a new weak vortex was created on the upper windward side, which resulted 3 vortices within the wake. The size and the strength of the vortices increased with yaw angle.

  • PDF

U-자형 곡관내의 유동특성에 대한 수치해석적 연구 (NUMERICAL SIMULATION OF THE FLOW CHARACTERISTICS INSIDE A U-TYPE TUBE)

  • 고동훈;강동진;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.97-103
    • /
    • 2009
  • A numerical study of the flow characteristics inside a U-type circular tube is carried out in this paper. The numerical simulations carried out by using a Navier-Stokes code which is commercially available. Before detailed numerical simulations, validation of present numerical approach is made by comparing numerical solutions with experimental data. Numerical simulations are performed to study the effect of curvature on the flow characteristics inside a U-type tube. Numerical solutions show that a significant effect on the secondary flow structure in the cross section of the tube, especially in the curved section is shown when the curvature ratio, ratio of curvature to tube diameter, is smaller than about 3.5. As the curvature ratio decreases below 3.5, a counter rotating vortex is found below the primary vortex in the cross section of the tube. Another dramatic change of the flow structure is the formation of streamwise separation zone when the curvature ratio is decreased below 1.25.

  • PDF