• 제목/요약/키워드: Counter-flow jet

검색결과 40건 처리시간 0.021초

Drag Reduction Effect by Counter-flow Jet on Conventional Rocket Configuration in Supersonic/Hypersonic Flow

  • Kim, Yongchan;Kim, Duk-Min;Roh, Tae-Seong;Lee, Hyoung Jin
    • 항공우주시스템공학회지
    • /
    • 제14권4호
    • /
    • pp.18-24
    • /
    • 2020
  • The counter-flow jet from a supersonic/hypersonic vehicle causes a structural change in the shock wave generated around the aircraft, which can lead to reduced drag and heat loads. Since the idea is to mount a counter-flow jet device for drag reduction in the aircraft, it is necessary to understand the effect of such a device on the entire aircraft. In this study, the effect of drag reduction due to counter-flow jet on a conventional rocket configuration was analyzed through CFD analysis. The results showed that the drag reduction effect was the largest in the blunt region and that the counter-flow jet also affected the downstream of the aircraft. The analysis indicated that the drag reduction effect by the counter-flow jet was about 10 to 25 % when targeting the entire rocket-shaped area, while the effect was as high as 50% when targeting only blunt objects.

초음속 역분사 유동이 초음속 비행체 성능에 미치는 영향에 대한 수치해석적 연구 (A Numerical Analysis of Supersonic Counter Jet Flow Effect on Performance of a Supersonic Blunt-Body)

  • 서덕교;서정일;송동주
    • 한국전산유체공학회지
    • /
    • 제7권3호
    • /
    • pp.1-8
    • /
    • 2002
  • The counter jet flow which is injected against the free stream at stagnation region of blunt body for improvement of aerodynamic performance has been studied by using upwind Navier-Stokes method. The variations of drag force and upwind forward penetration depth due to changes in the stagnation thermodynamic properties of counter jet flow such as total pressure, Mach number, and total temperature have been studied. The results show that the changes in the stagnation pressure and Mach number have large effects on the wall pressure and drag force, but the total temperature does not affect the wall pressure and drag force.

역분사 유동이 초음속 비행체에 미치는 영향에 대한 수치해석적 연구 (A Numerical Analysis of Counter Jet Flow Effect on the Blunt-Body Vehicle)

  • 서덕교;서정일;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.29-34
    • /
    • 2002
  • TIn this study, the counter-jet flows which designed for improvement of aerodynamic performance of the blunt body vehicle have been analyzed. The variations of the drag force and jet penetration depth due to changes in the stagnation properties of counter jet new such as total pressure, mach number, and total temperature. The counter jet flow, which is injected toward incoming supersonic freestream at stagnation region of blunt cone-cylinder vehicle, have been studied by using upwind flux difference splitting navier-stokes method. The changes in the stagnation pressure and Mach number resulted in large effects on the wall pressure and drag force, on the other hand tile total temperature changes did not.

  • PDF

환형 유동을 수반하는 초음속 스월 제트 유동의 가시화 (Visualization of the Supersonic Swirl Jet with Annular Stream)

  • 김중배;이권희;;김희동
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.91-94
    • /
    • 2003
  • The present study addresses experimental results to investigate the details of the near field flow structures produced in the under-expanded, dual, coaxial, swirling, jet. The sonic swilling jets are emitted from a sonic inner nozzle and the outer annular nozzle produces the co/counter swirling streams against the primary swirling jet, respectively. The interactions between both the secondary annular swirling and primary inner supersonic swirling jets are quantified by the pilot impact and static pressure measurements, and visualized by using the Schlieren optical method. The experiment has been performed fur different swirl intensities and pressure ratios. The results obtained show that the secondary co-swirling jet significantly changes the inner under-expanded swirling jet, such as the recirculation zone, pressure distribution, through strong interactions between both the swirling jets, and the effect of the secondary counter-swirling jet on the primary inner jet is similar to the secondary co-swirl jet case.

  • PDF

부족팽창 동축 스월 제트유동 특성에 관한 실험적 연구 (An Experimental Study of Under-Expanded Coaxial, Swirling Jets)

  • 김중배;이권희;토시아키세토구치;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.580-585
    • /
    • 2003
  • The present study addresses experimental results to investigate the details of the near field flow structures produced in the under-expanded, dual, coaxial, swirling, jet. The sonic/supersonic swirling jets are emitted from the sonic inner nozzle and the outer annular nozzle produce the co-swirling and counter swirling against the primary swirling jet, respectively. The interactions between both the secondary annular swirling and primary inner supersonic swirling jets are quantified by the pitot impact and static pressure measurements and visualized by using the Schliern optical method. The experiment is performed for different swirl intensity and pressure ratio. The results obtained show that the secondary co-swirling jet significantly changes the inner under-expanded swirling jet, such as the recirculation zone, pressure distribution, through strong interactions between both the swirling jets and the effects of the secondary counter-swirling jet is similar to the secondary co-swirl jet case.

  • PDF

Synthetic Jet Actuator를 이용한 능동 유동 제어 (Active Flow Control Using the Synthetic Jet Actuator)

  • 노종민;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.65-69
    • /
    • 2005
  • Curretly, the development of MEMS(Micro Electronic Mechanical System) technology awakes many research's interest for the aerodynamics. This work presents the development of a compact synthetic jet actuator for flow separation control at the flat plate. The formation and evolution of fluidic actuators based on synthetic jet technology are investigated using Reynolds-Averaged Navier-Stokes equations. Also, 2-Dimensional, unsteady, incompressible Navier-Stokes equation solver with single partitioning method for Multi-Block grid to analyze and a modeled boundary condition in developed fo. the synthetic jet actuator. Both laminar and turbulent jets are investigated. Results show very good agreement with experimental measurements. A jet flow develops, even though no net mass flow is introduced. Pair of counter-rotating vortices are observed near the jet exit as are observed in the experiments.

  • PDF

마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part I: 형상 최적화를 위한 실험적 연구) (Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part I: Experimental Study on Geometric Optimization))

  • 박태준;황철홍;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.199-200
    • /
    • 2012
  • An experimental study on geometric optimization was conducted to develop a hybrid/dual swirl jet combustor for a micro-gas turbine. A hybrid concept indicating a combination of swirling jet partially premixed and premixed flames were adopted to achieve high flame stability as well as clean combustion. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with a constant fuel flow rate for each nozzle. The results showed that the variation in location of pilot nozzle resulted in significant change in swirl intensity due to the change in flow area near burner exit, and thus, optimized nozzle location was determined on the basis of CO and NOx emissions under conditions of co-swirl flow and swirl $angle=30^{\circ}$. The increase in swirl angle (from $30^{\circ}$ to $45^{\circ}$) enhanced the emission performances, in particular, with a significant reduction of CO emission near lean-flammability limit. It was observed that the CO emission near lean-flammability limit was further reduced through the counter-swirl flow. However, there was not significant change in the NOx emission in the operating conditions (i.e. equivalence ratio of 0.6~0.7) between the co- and the counter-swirl flow.

  • PDF

횡단 유동장의 기액비 및 레이놀즈수 변화에 따른 외부혼합형 이상유체 제트의 액적크기 및 체적유속 특성 (Characteristics of SMD and Volume Flux of Two-phase Jet Injected into Cross-flow with Various Gas-liquid Ratio and Reynolds Number)

  • 김종현;이봉수;구자예
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.75-81
    • /
    • 2009
  • A study was performed to investigate the characteristics of two-phase jet injected into subsonic cross-flow using the external mixed gas blast two-phase nozzle. The shadowgraph method was adopted for the cross-flow jet visualization and PDPA system was used to measure droplet size, velocity, and volume flux. The atomization of two-phase jet is initially determined according to gas to liquid mass flow-rate ratio and the Reynolds number of cross-flows. The highest penetration trajectories of two-phase jet injected into cross-flow are governed by the momentum ratio at subsonic cross-flow. As GLR of two-phase jet injected into cross-flow increases, the droplet size decreases and the distribution area of volume flux increases. The distribution of volume flux that influenced by the counter vortex pair at the downstream of cross-flow is symmetric in shape of horseshoe.

원형분사제트 조절을 통한 유동특성 및 제트 벡터링의 효과 고찰 (Experimental Studies on Flow Characteristics and Thrust Vectoring of Controlled Axisymmetric Jets)

  • 조형희;이창호;이영석
    • 한국추진공학회지
    • /
    • 제1권1호
    • /
    • pp.33-45
    • /
    • 1997
  • 자유제트를 제어하는 방법중 하나는 분사제트 주위에 형성되는 와류를 조절하는 것이다. 이를 위하여 제트노즐 주위에 환형관을 설치하여 환형관으로부터 2차제트를 분사 또는 흡입함으로써 제트주위에 형성되는 전단류를 변화시켰다. 2차제트를 분사하는 경우(R<1.0) 주제트 주위에 형성되는 와류의 발달을 억제함으로써 제트포텐셜코어의 길이가 아주 길어지는 제트유동을 얻을 수 있었고 흡입하는 경우에는(R>1.0) 제트주위의 전단류가 흡입비 R=1.3~l.65에서 대류불안정성에서 절대불안정성으로 바뀜으로써 형성된 와류가 하류에서 제트중심부까지 발전, 결합되는 것을 방지하여 더 긴 포텐셜코어와 중심에서 낮은 난류강도를 얻었다. 위의 결과는 환형관 주위에 부착한 깃의 높이 변화에 따라서 변화하였는데, 이것은 깃이 환형관을 통한 흡입유동의 유로역할을 함으로써 출구 주위의 유체가 직접흡입되는 것을 방지하기 때문이다. 분사제트 벡터링을 위하여 제트노즐 주위의 환형관을 이등분하여 한쪽으로만 흡입함으로써 제트주위에 다른 전단류를 형성함과 동시에 코안다(Goanda)효과를 이용하여 분사제트를 편향시켰다. 편향되는 정도 및 난류성분은 흡입속도비에 따라서 크게 바뀌었다. 실험은 속도분포와 난류강도 측정이 수행되었으며 가시화를 이용하여 유동특성을 관찰하였다.

  • PDF

Effect of Convex Wall Curvature on Three-Dimensional Behavior of Film Cooling Jet

  • Lee, Sang-Woo;Lee, Joon-Sik;Keon Kuk
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1121-1136
    • /
    • 2002
  • The flow characteristics of film coolant issuing into turbulent boundary layer developing on a convex surface have been investigated by means of flow visualization and three-dimensional velocity measurement. The Schlieren optical system with a spark light source was adopted to visualize the jet trajectory injected at 35° and 90° inclination angles. A five-hole directional pressure probe was used to measure three-dimensional mean velocity components at the injection angle of 35°. Flow visualization shows that at the 90° injection, the jet flow is greatly changed near the jet exit due to strong interaction with the crossflow. On the other hand, the balance between radial pressure gradient and centrifugal force plays an important role to govern the jet flow at the 35° injection. The velocity measurement shows that at a velocity ratio of 0.5, the curvature stabilizes downstream flow, which results in weakening of the bound vortex structure. However, the injectant flow is separated from the convex wall gradually, and the bound vortex maintains its structure far downstream at a velocity ratio of 1.98 with two pairs of counter rotating vortices.