• Title/Summary/Keyword: Counter-current flow

Search Result 96, Processing Time 0.028 seconds

Design of Counter current Extraction Process for the Separation of [Pr, Nd, Sm]/[La] using Cyanex 572 (Cyanex 572를 사용하여 [Pr, Nd, Sm]/[La]분리에 대한 향류추출공정 설계)

  • Lee, Joo-eun;So, Hong-Il;Jang, In-Hwan;Ahn, Jae-Woo;Kim, Hong-in;Lee, Jin-young
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.50-56
    • /
    • 2018
  • For the purpose of optimizing the counter current extraction process for separation of [Pr, Nd, Sm] group and [La] in mixed solution using Cyanex 572 as an extractant, the theory of Xu Guangxian was derived for calculating the optimized extraction factors. From the basic batch test result, the separation factor was 16.80 at extraction process and 21.48 at scrubbing process, and the loading capacity of 1.0 M Cyanex 572 was 0.12 M of rare earth element. The process parameters such as the stage number at extraction and scrubbing process, the flow rate ratio of feed and solvent solution can be calculated using an equation of optimum extraction ratio proposed by Xu Guangxian. From the result of calculation, 7 extraction stages and 4 scrubbing stages were required for rare earth separation, and the flow rate ratio of feed solution, solvent solution, scrubbing solution was 25 : 5.67 : 12.27.

A Study on the Performance Estimation and Shape Design of a Counter-Rotating Tidal Current Turbine (상반전 조류발전 터빈의 형상설계 및 성능예측에 관한 연구)

  • Kim, Mun-Oh;Kim, You-Taek;Lee, Young-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.586-592
    • /
    • 2014
  • This study looks at the design of a 100 kW blade geometry for a horizontal marine current turbine using the Blade Element Momentum Theory (BEMT) and by using (CFD), the power output, performance and characteristics of the the fluid flow over the blade is estimated. Three basic airfoils; FFA-W3-301, DU-93-W210 and NACA-63418, are used along the blade span and The distribution of the chord length and twist angles along the blade are obtained from the hydrodynamic optimization procedure. The power coefficient curve shows maximum peak at the rated tip speed ratio of 5.17, and the maximum power reaches about 101.82 kW at the power coefficient of 0.495.

A Simulation Study of the Effect of Microstructural Design on the Performance of Solid Oxide Fuel Cells With Direct Internal Reforming (내부개질형 고체산화물 연료전지의 마이크로 전극구조가 성능에 미치는 영향에 관한 해석적 연구)

  • Sohn, Sangho;Nam, In Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.401-412
    • /
    • 2013
  • The paper is to study on the simulation of the micro/macroscale thermo-electrochemical model of a single cell of anode-supported SOFC with direct internal reforming. The coupled heat and mass transport, electrochemical and reforming reactions, and fluid flow were simultaneously simulated based on mass, energy, charge conservation. The micro/macroscale model first calculates the detailed electrochemical and direct internal reforming processes in porous electrodes based on the comprehensive microscale model and then solve the macroscale processes such as heat and mass transport, and fluid flow in SOFCs with assumption of fully-developed flow in gas channel. The simulation results evaluate the overall performance by analyzing distributions of mole fraction, current density, temperature and microstructural design in co/counter flow configurations.

Improvement of the CCFL Model of the RELAP5/MOD3.2.2B Code in a Horizontal Pipe

  • Heo, Sun;No, Hee-Cheon;Chang, Kyung-Sung;Ha, Sang-Jun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.115-115
    • /
    • 1999
  • To demonstrate the applicability of RELAP5 to the prediction of the onset offlooding in the hot leg at the reflux condensation phase during mid-loop operation, numerical analysis is performed for the counter-current flow in a horizontal pipe with the inclined riser using the RELAP5/MOD3.2.2b code. It is found that the RELAP5, simulating the CCFL phenomena using interfacial friction along with the flow regime map in the horizontal pipe, produces unsatisfactory results. Under the CCFL condition, it is observed that large oscillation exists in the flow rate, void fraction, and etc. and the liquid flow rate is much lower than that predicted by the CCFL model measured in the experiment. The CCFL model of RELAP5 for the vertical volume is extended to the model for the horizontal and inclined volumes. The horizontal volume flow regime map and interfacial friction model coupled to the CCFL model are modified. And a new correlation developed from Kang's experiment is implemented to the CCFL model of RELAP5. With this modified RELAP5, the analysis of CCFL phenomena in the horizontal pipe and hot leg geometry is performed, and produces reasonable results in comparison with experimental data.

  • PDF

An Experimental Study on the Quenching Phenomena of Hemispherical Downward Facing Convex Surfaces with Narrow Gaps (반구형 소형 간극 내에서의 냉각과정에 관한 실험적 연구)

  • Ha, Kwang-Soon;Park, Rae-Joon;Kim, Sang-Baik;Cho, Young-Ro;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.447-452
    • /
    • 2001
  • Quenching phenomena of hemispherical downward facing convex surfaces with narrow gaps have been investigated experimentally. Experiments employed test sections having 1 and 2 mm in gap thickness and 1 atm in system pressure. From interpretations of the temperature and the heat flux history, it was found that the flooding inside the gap was restricted by CCFL phenomena and quenching process was propagated from lower to upper region of the internal copper shell. The ratio of the maximum heat fluxes at 1 mm to 2mm in gap thickness was the almost same that obtained by steady state experiments. The quenching scenario of the hemispherical downward facing surface with narrow gap has been suggested.

  • PDF

Correlation Development on Critical Power in a Spherical Narrow Gap (구형 간극에서의 임계 출력에 대한 상관식 개발)

  • Park, Rae-Joon;Ha, Kwang-Soon;Kim, Sang-Baik;Kim, Hee-Dong;Jeong, Ji-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.235-240
    • /
    • 2001
  • The CHFG (Critical Heat Flux in Gap) test results have been evaluated to quantify the critical power in hemispherical narrow gaps and a new correlation has been developed. The CHFG test results have shown that increases in the gap thickness and pressure lead to an increase in critical power. The pressure effect on the critical power was found to be much milder than predictions by CHF correlations of other researches. From the CHFG test results, a new correlation on critical power in the hemispherical gap has been developed using the non-dimensional parameters as follows: $$\frac{qCHF}{{\rho}g^hfg}{\cdot}4\sqrt{\frac{{\rho}_g^2}{g{\sigma}{\Delta}{\rho}}=\frac{0.1042}{1+0.1375({\rho}g/{\rho}l)^{0.21}(D/s)}$$ The developed correlation has been expanded to apply the spherical geometry using the Siemens/KWU's correlation.

  • PDF

OPTIMAL SHAPE DESIGN OF A S-SHAPED SUBSONIC INTAKE USING NURBS (NURBS를 이용한 S형 천음속 흡입관 최적 설계)

  • Lee B.J.;Kim C.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.57-66
    • /
    • 2006
  • An optimal shape design approach is presented for a subsonic S-shaped intake using aerodynamic sensitivity analysis. Two-equation turbulence model is employed to capture strong counter vortices in the S-shaped duct more precisely. Sensitivity analysis is performed for the three-dimensional Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method For code validation, the result of the flow solver is compared with experiment data and other computational results of bench marking test. To study the influence oj turbulence models and grid refinement on the duct flow analysis, the results from several turbulence models are compared with one another and the minimum number of grid points, which can yield an accurate solution is investigated The adjoint variable code is validated by comparing the complex step derivative results. To realize a sufficient and flexible design space, NURBS equations are introduced as a geometric representation and a new grid modification technique, Least Square NURBS Grid Approximation is applied With the verified flow solver, the sensitivity analysis code and the geometric modification technique, the optimization of S-shaped intake is carried out and the enhancement of overall intake performance is achieved The designed S-shaped duct is tested in several off-design conditions to confirm the robustness of the current design approach. As a result, the capability and the efficiency of the present design tools are successfully demonstrated in three-dimensional highly turbulent internal flow design and off-design conditions.

An Experimental Study on the CCFL in Narrow Annular Gaps with Large Diameter (곡률 반경이 큰 환상관 간극에서 CCFL에 대한 실험 연구)

  • Lee, Seung-Jin;Jeong, Ji-Hwan;Park, Rae-Joon;Kim, Sang-Baik;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.795-800
    • /
    • 2000
  • A CCFL(Counter Current Flow Limit) test have been performed in narrow annular gaps with large diameter, because it has been confirmed that the CCFL phenomena affected the critical power in hemispherical narrow gap geometries from the SONATA(Simulation Of Naturally Arrested Thermal Attack)-IV (In-Vessel)/VISU(Visualization)-II experiments. The objectives of the CCFL experiments are to investigate the small gap sizes(1, 2mm) effect on CCFL under the large diameter condition and to confirm the findings of the VISU-II study that global dryout in hemispherical narrow gaps was induced by the CCFL. The test section was made of acrylic resin to allow visual observation on the two-phase flow behaviors inside annular gaps. It was observed from visualization that a part of water supplied was accumulated in the upper plenum and a significant increase in the differential pressure across the gap was occurred, which was the definition of the CCFL occurrence in this experimental study. From the experimental results in annular gap with large diameter it can be known that an increase in the differential pressure was not big at small air flow-rates. When the CCFL was occurred, the differential pressure across gaps was increased significantly and a water accumulated in the upper plenum. The occurrence of CCFL was correlated using the Wallis parameter.

  • PDF

PWR Hot Leg Natural Circulation Modeling with MELCOR Code

  • Park, Jae-Hong;Lee, Jong-In;Randall. K. Cole;Randall. O. Gauntt
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.772-777
    • /
    • 1997
  • Previous MELCOR and SCDAP/RELAP5 nodalizations for simulating the counter-current, natural circulation behavior of vapor flow within the RCS hot legs and SG U-tubes when core damage progress can not be applied to the steady state and water-filled conditions during the initial period of accident progression because of the artificially high loss coefficients in the hot legs and SG U-tubes which were chosen from results of COMMIX calculation and the Westinghouse natural circulation experiments in a 1/7-scale facility for simulating steam natural circulation behavior in the vessel and in the hot leg and SG during the TMLB' scenrio. The objective of this study is to develop a natural circulation modeling which can be used both for the liquid flow condition at steady state and for the vapor flow condition at the later period of in-vessel core damage. For this, the drag forces resulting from the momentum exchange effects between the two vapor streams in the hot leg was modeled as a pressure drop by pump model. This hot leg natural circulation modeling of MELCOR was able to reproduce similar mass flow rates with those predicted by previous models.

  • PDF

A Review on the Analysis of the Equatorial Current System and the Variability during the El Niño Period: Focusing on the Misconceptions in the Field of Secondary Education (적도 해류계 분석 및 엘니뇨 시기의 변동에 관한 논의: 중등 교육 현장의 관련 오개념을 중심으로)

  • Chang, You-Soon
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.296-310
    • /
    • 2021
  • El Niño is a typical ocean and atmospheric interaction phenomenon that causes climate variability on a global scale, so it has been used as a very important teaching and learning material in the field of earth science. This study summarized the distribution and dynamics of the equatorial current system. The variability of the equatorial current system during the El Niño period and the associated misconceptions were also investigated. The North Equatorial Current, South Equatorial Current, and Equatorial Under Current significantly weaken during El Niño years. However, the variability of the North Equatorial Counter Current (NECC) during the El Niño period cannot be generalized because the NECC shows southward movement with weakening in the northern area and strengthening in the southern area, along its central axis. In the western Pacific, the NECC is further south during El Niño years, and thus, it has an eastward flow in the equatorial western Pacific. Our analysis of a mass media science article, a secondary school exam, and a survey for incumbent teachers confirmed disparate ideas about the equatorial current system's variability during El Niño periods. This is likely due to inaccurate interpretations of the existing El Niño schematic diagram and insufficient understanding of the equatorial current and wave dynamics.