• Title/Summary/Keyword: Counter-Rotating

Search Result 173, Processing Time 0.025 seconds

Heat/Mass Transfer and Friction Characteristic in a Square Duct with Various Discrete Ribs -In-Lined Gap Arrangement Ribs- (덕트내 요철의 단락위치 변화에 따른 열/물질전달 및 압력강하 특성 - 정렬 단락배열 요철 -)

  • Lee, Sei-Young;Choi, Chung;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1640-1649
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements on heat/mass transfer in the cooling passage of gas turbine blades. A complex flow structure occurs in the cooling passage with rib turbulators which promote heat transfer on the wall. It is important to increase not only the heat transfer rates but also the uniformity of heat transfer in the cooling passage. A numerical computation is performed using a commercial code to calculate the flow structures and experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. A square channel (50 mm $\times$ 50 mm) with rectangular ribs (4 mm $\times$ 5 mm) is used fur the stationary duct test. The experiments focus on the effects of rib arrangements and gap positions in the discrete ribs on the heat/mass transfer on the duct wall. The rib angle of attack is 60°and the rib-to-rib pitch is 32 mm, that is 8 times of the rib height. With the inclined rib angle of attack (60°), the parallel rib arrangements make a pair of counter rotating secondary flows in the cross section, but the cross rib arrangements make a single large secondary flow including a small secondary vortex. These secondary flow patterns affect significantly the heat/mass transfer on the ribbed wall. The heat/mass transfer in the parallel arrangements is 1.5 ∼2 times higher than that in the cross arrangements. However, the shifted rib arrangements change little the heat/mass transfer from the inline rib arrangements. The gap position in the discrete rib affects significantly the heat/mass transfer because a strong flow acceleration occurs locally through the gap.

An Experimental Study on the Flow Around a Simplified 2-Dimensional Vehicle-Like body (단순화된 2차원 자동차형 물체주위의 유동에 관한 실험적 연구)

  • 유정열;김사량;강신형;백세진;이택시;김응서
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.178-189
    • /
    • 1989
  • An experimental study has been performed to study the effect of the base slant angle of a 1/10 scale two-dimensional vehicle-like body on its wake flow including the recirculating region, where the simplified shape of the body has been originated from a profile of a domestic passenger car. In the case of a Reynolds number based on the length of the model R=7.96*10$^{5}$ , the surface pressure coefficient, the mean velocity and the turbulent stresses have been measured, while the flow visualization technique using wool tuft has been adopted as well. When the base slant angle of the model is 15.deg., the free stream flowing parallel to the slant is observed to be separated from the lower edge of the slant, thus forming the smallest recirculating region. When the base slant angles are 30.deg. and 45.deg., the free streams are separated from the upper edge of the slant and the sizes of the recirculating zones are observed to be almost the same as when the base slant angle is 0.deg. From these observations, it is conjectured that between the base slant angles of 15.deg. and 30.deg. there exists a critical angle at which the size of the recirculating region becomes minimum and as the slant angle becomes larger than this critical angle the separation line moves along the slant towards the rear edge of the roof. Through the flow visualization technique, the existence of the two counter-rotating bubbles in the recirculating region has been clearly observed and verified.

Flow Control Inside a Molten Zn Pot for Improving Surface Quality of Zinc Plated Strips (아연도금강판의 품질향상을 위한 도금욕 내부 유동제어 연구)

  • Choi, Jae-Ho;Koh, Min-Seok;Kim, Seok;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1392-1399
    • /
    • 2001
  • The flow fields inside a molten Zn pot of continuous hot-chip galvanizing process were investigated experimentally. With varying several parameters including the strip speed Vs, flow rate Q of induction heater. scrapper location and baffle configuration, instantaneous velocity fields were measured using a PIV velocity field measurement technique. Inside the strip region, counter-clockwise rotating flow is dominant. The general flow pattern inside the strip region is nearly not influenced by the strip speed Vs, flow rate Q and the scrapper location. In the exit region, the flow separated from the moving strip due to the existence of a stabilizing roll ascends to the free surface, for the cases of no scrapper and scrapper detached form the roll. On the other hand, the ascending flow to the free surface is decreased, as the flow rate Q of induction heater increases. By installing a baffle around the uprising strip, the flow moving up to the stabilizing roll decreases. In addition, B-type baffle is better than A-type baffle in reducing speed of flow around the stabilizing rolls. However, the flow ascended to the free surface is largely influenced by changing the flow rate Q, and the scrapper location, irrespective of the baffle type.

Flow Characteristics inside a Throttle Valve Used to Control the Intake Air Flow in Engines (엔진의 흡기 공기량 조절용 스로틀 밸브에서의 유동 특성)

  • Kim, Sung-Cho;Kim, Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.91-98
    • /
    • 1999
  • This paper describes the air flow characteristics inside the throttle valve. Tow-dimensional steady incompressible Navier-Strokes equation are solved numerically with embedding the conceopt of the artificial compressibility and adopting the Baldwin-Lomax turbulence model. With varying the valve opening angles(the Reynolds number )such as 15$^{\circ}$(5000) , 45$^{\circ}$(3000) , 75$^{\circ}$(7000) and 90$^{\circ}$(10000), respectively. tow cases, with a valve shaft and without one, are analysed. The pressure loss between the entrance and exit is severe at 15$^{\circ}$, 100 times as larger as that of 90$^{\circ}$ case, which also depends much on the existece of the valve shaft. The counter rotating vortices are formed over the valve plate with the shaft at only 75$^{\circ}$. They are smally and very large scale in front and back of the valve shaft , respectively. The velocity profiles of 15$^{\circ}$ and 90$^{\circ}$ at the exit are almost symmetric to the horizontal center line, however, the symmetricity is no longer maintained at 45$^{\circ}$ and 75$^{\circ}$ , and in addition, the flow at 75$^{\circ}$ is enforced a lot below center line. The pressure distribution on the walls is largely changed near the valve shaft, and its magnitude becomes great as the valve angle decreases.

  • PDF

Particulate Emissions from a Direct Injection Spark-ignition Engine Fuelled with Gasoline and LPG (가솔린 및 LPG 연료를 사용하는 직접분사식 불꽃점화엔진에서 배출되는 극미세입자 배출 특성에 관한 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Kang, Kern-Yong;Cho, Jun-Ho;Cha, Kyoung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.65-72
    • /
    • 2011
  • In this study, the numbers, sizes of particles from a single cylinder direct injection spark-ignition (DISI) engine fuelled with gasoline and LPG are examined over a wide range of engine operating conditions. Tests are conducted with various engine loads (2~10bar of IMEP) and fuel injection pressures (60, 90, and 120 bar) at the engine speed of 1,500 rpm. Particles are sampled directly from the exhaust pipe using rotating disk thermodiluter. The size distributions are measured using a scanning mobility particle sizer (SMPS) and the particle number concentrations are measured using a condensation particle counter (CPC). The results show that maximum brake torque (MBT) timing for LPG fuel is less sensitive to engine load and its combustion stability is also better than that for gasoline fuel. The total particle number concentration for LPG was lower by a factor of 100 compared to the results of gasoline emission due to the good vaporization characteristic of LPG. Test result presents that LPG for direct injection spark ignition engine help the particle emission level to reduce.

Design and Fabrication of a small Coaxial Rotorcraft UAV (동축반전 헬리콥터형 소형 무인항공기 설계 및 제작)

  • Kim, Sang-Deok;Byun, Young-Seop;Song, Jun-Beom;Lee, Byoung-Eon;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.293-300
    • /
    • 2009
  • The rotorcraft-based unmanned aerial vehicle(UAV) capable of performing close-range surveillance and reconnaissance has been developed. Trade studies on mission feasibility led to the adoption of a coaxial rotorcraft with twin rotors counter-rotating in one axis and driven by electric motors. A commercial off-the-shelf flight control computer(FCC) and a radio frequency modem were adopted for autonomous navigation. In order to achieve an aerial view, commercial charge-coupled device camera was also integrated into the vehicle. The performance of the completed vehicle was proved with manual flight test, and mission capability was verified through waypoint navigation flight after being equipped with FCC. This paper treats the whole process of design and system integration for development of the coaxial rotorcraft UAV.

Flow Control by Piezoceramic Actuator in a flat plate (평판에서 압전 세라믹 액추에이터에 의한 유동제어)

  • Kim, Dong-Ha;Han, Jong-Seob;Chang, Jo-Won;Kim, Hak-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1080-1088
    • /
    • 2009
  • An actuator using piezoceramic material was designed in order to perform a flow control for flat plate flow. Boundary layer measurements were carried out to explore the flow disturbances by the designed actuator that was activated at low excitation frequency(15Hz). The mean velocity and fluctuation in the boundary layers were measured at $x/{\delta}^*=31.9$ downstream from the actuator tip by a one-dimensional hot-wire probe(55P14). Results reveal that low- and high-velocity regions were observed in the vicinity of the actuator center and in the outer area of the actuator respectively, and the formation of counter-rotating streamwise vortices was predicted. The fluctuations were persistently found in the outer part of the actuator and an inflection point in the spanwise gradient of the streamwise velocity was observed. Boundary layer instability was amplified at both the actuator excitation frequency and the T-S wave frequency when the actuator was excited at low frequency.

Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method (3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck;Choi, Byung-Il;Kouchi, Toshinori;Masuya, Goro
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • Vent mixer can provide main flow directly into a recirculation region downstream of the mixer to enhance fuel-air mixing efficiency. Based on experimental results of three-dimensional velocity, vorticity and turbulent kinetic energy obtained by a stereoscopic PIV method, the performance of the vent mixer was compared with that of the step mixer which was used as a basic model. Thick shear layers of the vent mixer induced the increase of the penetration height. The turbulent kinetic energy mainly distributed along a boundary layer between the main flow and the jet plume. This turbulent field activates mass transfer in a mixing region, leading to the mixing enhancement.

Performance analysis of Coaxial Propeller for Multicopter Type PAV (Personal Air Vehicle) (멀티콥터형 PAV(Personal Air Vehicle)의 동축반전 프로펠러에 대한 성능해석)

  • Kim, Young Tae;Park, Chang Hwan;Kim, Hak Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.56-63
    • /
    • 2019
  • Performance analyses were performed on a propeller developed for use in a PAV (Personal Air Vehicle) under 600 kg Maximum Take-Off Weight (MTOW). The actuator disc theory and CFD analyses were used to estimate the hovering time with regards to MTOW variation for a given battery weight. The interference induced power factor kint was introduced to account for the effect of flow interference between the propellers and to estimate the performance of counter-rotating propellers. The Maximum Figure of Merit (FM) value of the propeller pitch was determined and the design RPM range for the required power inversely obtained from the CFD results. Previous research indicate that the flight time of large multi-copter is limited by the available battery energy density. Similarly, the propeller pitch settings and spacing are important factors in reducing the kint value.

Vibration Reduction Simulation of UH-60A Helicopter Airframe Using Active Vibration Control System (능동 진동 제어 시스템을 이용한 UH-60A 헬리콥터 기체의 진동 감소 시뮬레이션)

  • Lee, Ye-Lin;Kim, Do-Young;Kim, Do-Hyung;Hong, Sung-Boo;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.443-453
    • /
    • 2020
  • This study using the active vibration control technique attempts to alleviate numerically the airframe vibration of a UH-60A helicopter. The AVCS(Active Vibration Control System) is applied to reduce the 4/rev vibration responses at the specified locations of the UH-60A airframe. The 4/rev hub vibratory loads of the UH-60A rotor is predicted using the nonlinear flexible dynamics analysis code, DYMORE II. Various tools such as NDARC, MSC.NASTRAN, and MATLAB Simulink are used for the AVCS simulation with five CRFGs and seven accelerometers. At a flight speed of 158knots, the predicted 4/rev hub vibratory loads of UH-60A rotor excite the airframe, and then the 4/rev vibration responses at the specified airframe positions such as the pilot seat, rotor-fuselage joint, mid-cabin, and aft-cabin are calculated without and with AVCS. The 4/rev vibration responses at all the locations and directions are reduced by from 25.14 to 96.05% when AVCS is used, as compared to the baseline results without AVCS.