• 제목/요약/키워드: Counter clockwise

검색결과 88건 처리시간 0.022초

용융아연 도금공정에서의 SNOUT 내부 유동장 해석 ( I ) (Velocity Field Measurement of Flow Inside SNOUT of Zinc Plating Process ( I ))

  • 신대식;최제호;이상준
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1265-1273
    • /
    • 1999
  • PIV(Particle Image Velocimetry) velocity field measurements inside the snout of a1/10 scale model of the Zn plating process were carried out at the strip speed $V_s=1.5m/s$. Aluminum powder particles ($1{\mu}m$) and atomized olive oil ($3{\mu}m$) were used as seeding particles to simulate the molten Zinc flow and deoxidization gas flow, respectively. A pulsed Nd:Yag laser and a $2K{\times}2K$ high-resolution CCD camera were synchronized for the PIV velocity field measurement. From flow visualization study, it is found that the liquid flow in the Zn pot is dominantly governed by the uprising flow caused by the rotating sink roll, with its effect on the steel strip inside the snout largely diminished by installing of the snout. The deoxidization gas flow in front of the strip inside the snout can be characterized by a large-scale vortex rotating clockwise direction formed by the moving strip. In the rear side of the strip, a counter-clockwise vortex is formed and some of the flow entrained by the moving strip impinges on the free surface of molten zinc. The liquid flow in front of the strip is governed by the flow entering the snout, caused by the spinning sink roll. Just below the free surface a counter-clockwise vortex is formed near the snout wall. The moving strip affects dominantly the flow behind the strip inside the snout, and large amount of the liquid flow follows the moving strip toward the sink roll. The thickness of the flow following the strip is very thin in the front side due to the uprising flow, however thick boundary layer is formed in the rear side of the strip. Its thickness is increased as moving downstream toward the sink roll. Inside the snout, the deoxidization gas flow above the free surface is much faster than the liquid flow in the zinc pot. Due to the larger influx of the flow following the moving strip in the rear side of the strip, higher percentage of imperfection can be anticipated on the rear surface of the strip.

Modification of Sea Water Temperature by Wind Driven Current in the Mountainous Coastal Sea

  • Choi, Hyo;Kim, Jin-Yun
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2003년도 International Symposium on Clean Environment
    • /
    • pp.177-184
    • /
    • 2003
  • Numerical simulation on marine wind and sea surface elevation was carried out using both three-dimensional hydrostatic and non-hydrostatic models and a simple oceanic model from 0900 LST, August 13 to 0900 LST, August 15, 1995. As daytime easterly meso-scale sea-breeze from the eastern sea penetrates Kangnung city in the center part as basin and goes up along the slope of Mt. Taegullyang in the west, it confronts synoptic-scale westerly wind blowing over the top of the mountain at the mid of the eastern slope and then the resultant wind produces an upper level westerly return flow toward the East Sea. In a narrow band of weak surface wind within 10km of the coastal sea, wind stress is generally small, less than l${\times}$10E-2 Pa and it reaches 2 ${\times}$ 10E-2 Pa to the 35 km. Positive wind stress curl of 15 $\times$ 10E-5Pa $m^{-1}$ still exists in the same band and corresponds to the ascent of 70 em from the sea level. This is due to the generation of northerly wind driven current with a speed of 11 m $S^{-1}$ along the coast under the influence of south-easterly wind and makes an intrusion of warm waters from the southern sea into the northern coast, such as the East Korea Warm Current. On the other hand, even if nighttime downslope windstorm of 14m/s associated with both mountain wind and land-breeze produces the development of internal gravity waves with a hydraulic jump motion of air near the coastal inland surface, the surface wind in the coastal sea is relatively moderate south-westerly wind, resulting in moderate wind stress. Negative wind stress curl in the coast causes the subsidence of the sea surface of 15 em along the coast and south-westerly coastal surface wind drives alongshore south-easterly wind driven current, opposite to the daytime one. Then, it causes the intrusion of cold waters like the North Korea Cold Current in the northern coastal sea into the narrow band of the southern coastal sea. However, the band of positive wind stress curl at the distance of 30km away from the coast toward further offshore area can also cause the uprising of sea waters and the intrusion of warm waters from the southern sea toward the northern sea (northerly wind driven current), resulting in a counter-clockwise wind driven current. These clockwise and counter-clockwise currents much induce the formation of low clouds containing fog and drizzle in the coastal region.

  • PDF

이산와류법을 사용한 비평면 지면 와류전개 연구 (Study on the Wake Evolution on the Non-Planar Ground Using a Discrete Vortex Method)

  • 한철희
    • 융복합기술연구소 논문집
    • /
    • 제6권2호
    • /
    • pp.21-24
    • /
    • 2016
  • Accurate simulation of wakeshapes behind a wing is important for the performance prediction of the aircraft and the wake hazard problem in the airport. In the present study, wakeshapes behind a wing inside tunnels are simulated in regard to the development of wing-in-ground effect vehicles. A discrete vortex method with a nonplanar ground modelling is used for the simulation. It was found that the wingtip vortices move toward outboard directions when the wing is in ground effect. When the wing is placed inside tunnels, the wingtip vortices move along the tunnel wall with counter clockwise direction. As the gap between the wingtip and the tunnel decreases, the wingtip vortices move further along the tunnel wall. Both vortices from bothsides of the wing will murge, which will be studied in future using a viscous computation.

The Suppressing of MR Image Artifacts using Phases Cycling in Fast SE Sequence

  • Shin, Yong-Jin;Jeong, Gwang-Woo
    • 한국자기공명학회논문지
    • /
    • 제2권1호
    • /
    • pp.59-65
    • /
    • 1998
  • The correction of image artifacts due to misadjustment in tuning of RF coils (tip angle) and in the RF single sideband spectrometer was investigated using phase cycling of the $\pi$/2 and $\pi$ pulses in spin-echo sequences. A general procedure was developed for the systematic design of phase cycles that select desirable coherence transfer pathways. To analyze a phase cycling sequence, changes in the coherence level and phase factor for each RF pulse in the spin-echo cycle must be determined. Four different phase cycling schemes (FIXED, ALTERNATE, FORWARD, REVERSED) to suppress unwanted signal components such as mirror and ghost images were evaluated using two signal acquisitions. When the receiver phase factor is cycled counter-clockwise (REVERSED), these artifacts are completely removed.

  • PDF

상부채널을 갖는 사각공간에서 열유속 변화에 따른 공기대류의 속도와 온도 가시화 (Velocity and temperature Visualization of Air Convection in Differently Heated Rectangular Cavity with Upper channel)

  • 이철재;정한식;박찬수;조대환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.290-295
    • /
    • 2000
  • An experimental study was carried out in a cavity with upper channel and square heat surface by visualization equipment with Mach-Zehnder interferometer and laser apparatus. The visualization system consists of 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system(CACTUS'2000). Obtained result showed various flow patterns. Severe unsteady flow fluctuation within the cavity are remarkable and sheared mixing layer phenomena are also found at the region where inlet flow is collided with the counter-clockwise rotating main primary vortex. Photographs of Mach-Zehnder are also compared in terms of constant heat flux.

  • PDF

상부채널을 갖는 사각공간에서 열유속 변화에 따른 공기대류의 속도와 온도 가시화 (Velocity and Temperature Visualization of Air Convection in Differently Heated Rectangular Cavity with Upper Channel)

  • 이철재
    • 태양에너지
    • /
    • 제20권4호
    • /
    • pp.53-60
    • /
    • 2000
  • An experimental study was carried out in a cavity with upper channel and square heat surface by visualization equipment with Mach-Zehnder interferometer and laser apparatus. The visualization system consists of 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system(CACTUS'2000). Obtained result showed various flow patterns. Severe unsteady flow fluctuation within the cavity are remarkable and sheared mixing layer phenomena are also found at the region where inlet flow is collided with the counter-clockwise rotating main primary vortex. Photographs of Mach-Zehnder are also compared in terms of constant heat flux.

  • PDF

인체 두부에서 Dynamic Tomogram의 응용에 관한 연구 (A STUDY ON THE APPLICATION OF DYNAMIC TOMOGRAM OF THE HUMAN HEAD)

  • 최의환;김재덕
    • 치과방사선
    • /
    • 제21권2호
    • /
    • pp.317-326
    • /
    • 1991
  • The purpose of this study was to establish the principle and the clinical application of dynamic tomogram of a human head by using the dental machine. For this study, a block of wax with details lying at three parallel planes and a human dry skull were used. This experiment was reexamined the dynamic tomogram with specialized radiographic device and view box, and the radiograms taken by the change of exposure time according to the numbers of film used in x-ray taking and taken according to the change of kVp and the types of film were analyzed density with the densitometer. From this study, the obtained results were as follows: 1. When the underexposed radiograms taken by angulation of clockwise and counter-clockwise direction of the film and skull. were superimposed and moved laterally, it was possible to focus on right and left jaws and teeth. 2. The superimposition of the two underexposed radiograms according to each condition of x-ray taking showed some differencies in density visually, and the measurement of density with the densitometer was 1.23 to 1.57 in 75kVp and 1.34 to 1.70 in 90kVp. 3. The superimposition of the two underexposed radiograms according to the kinds of x-ray film showed almost equal density visually, and the measurement of density with the densiometer was 1.34 to 1.37. 4. When seven radiograms taken by each condition of x-ray taking were superimposed on the view box, a intense rear light of view box didn't transilluminate film density regardless of the conditions of x-ray taking. Even though seven radiograms taken according to types of film were superimposed on the view box, a more intense rear light of view box was required to transilluminate total density of films. 6. Long film-object distance resulted in the enlargement and blurring of radiographic images.

  • PDF

Finite element analysis of maxillary incisor displacement during en-masse retraction according to orthodontic mini-implant position

  • Song, Jae-Won;Lim, Joong-Ki;Lee, Kee-Joon;Sung, Sang-Jin;Chun, Youn-Sic;Mo, Sung-Seo
    • 대한치과교정학회지
    • /
    • 제46권4호
    • /
    • pp.242-252
    • /
    • 2016
  • Objective: Orthodontic mini-implants (OMI) generate various horizontal and vertical force vectors and moments according to their insertion positions. This study aimed to help select ideal biomechanics during maxillary incisor retraction by varying the length in the anterior retraction hook (ARH) and OMI position. Methods: Two extraction models were constructed to analyze the three-dimentional finite element: a first premolar extraction model (Model 1, M1) and a residual 1-mm space post-extraction model (Model 2, M2). The OMI position was set at a height of 8 mm from the arch wire between the second maxillary premolar and the first molar (low OMI traction) or at a 12-mm height in the mesial second maxillary premolar (high OMI traction). Retraction force vectors of 200 g from the ARH (-1, +1, +3, and +6 mm) at low or high OMI traction were resolved into X-, Y-, and Z-axis components. Results: In M1 (low and high OMI traction) and M2 (low OMI traction), the maxillary incisor tip was extruded, but the apex was intruded, and the occlusal plane was rotated clockwise. Significant intrusion and counter-clockwise rotation in the occlusal plane were observed under high OMI traction and -1 mm ARH in M2. Conclusions: This study observed orthodontic tooth movement according to the OMI position and ARH height, and M2 under high OMI traction with short ARH showed retraction with maxillary incisor intrusion.

경사수역에 설치된 잠제 주변의 유속장과 와의 발생에 대한 수치모의 (Numerical Simulation of Velocity Fields and Vertex Generation around the Submerged Breakwater on the Sloped Bottom)

  • 허동수;김도삼
    • 한국해안해양공학회지
    • /
    • 제15권3호
    • /
    • pp.151-158
    • /
    • 2003
  • 잠제 주변의 유속장과 와의 발생에 대한 이해는 잠제의 소파메커니즘과 표사 및 구조물의 안정과 관련하여 중요한 기초자료로 활용될 수 있다. 본 연구에서는 일정한 경사수역에 설치된 불투과잠제 주변의 유속장의 해석과 와(vortex)서 발생을 수치적으로 모의하기 위해 자유수면의 추적기법인 VOF법에 기초하고 있는 김 등(2001, 2002)이 제안한 2차원 수치파동수로를 이용하였다. 특히, 잠제 주변의 정상류의 해석을 통해 잠제의 기하형상 및 파랑의 입사조건에 따른 와의 발생형태를 고찰하였다. 수치모의 결과 잠제 전면에서는 반시계 방향의 와가 발생하였고 잠제 후면에서는 시계방향의 와가 발생하였으며 와의 크기는 입사파고와 주기에 가장 민감하였다.

회전하는 원형실린더를 지나는 균일전단 유동에 관한 수치연구 (Numerical Study on Uniform-Shear new over a Rotating Circular Cylinder)

  • 강상모
    • 대한기계학회논문집B
    • /
    • 제29권5호
    • /
    • pp.577-589
    • /
    • 2005
  • The present study has numerically investigated two-dimensional laminar flow over a steadily rotating circular cylinder with a uniform planar shear, where the free-stream velocity varies linearly across the cylinder. It aims to find the combined effect of rotation and shear on the flow. Numerical simulations using the immersed boundary method are performed for the ranges of $-2.5{\le}\alpha{\le}2.5$ and $0{\le}K{\le}0.2$ at a fixed Reynolds number of Re=100, where a and K are respectively the dimensionless rotational speed and velocity gradient. Results show that the positive shear, with the upper side having the higher free-stream velocity than the lower one, favors the effect of the counter-clockwise rotation $(\alpha<0)$ but countervails that of the clockwise rotation $(\alpha>0)$. Accordingly, the absolute critical rotational speed, below which vortex shedding occurs, decreases with increasing K for $(\alpha>0)$, but increases for $\alpha>0$. The vortex shedding frequency increases with increasing \alpha (including the negative) and the variation becomes steeper with increasing K. The mean lift slightly decreases with increasing K regardless of the rotational direction. However, the mean drag and the amplitudes of the lift- and drag-fluctuations strongly depend on the direction. They all decrease with increasing K for $\alpha>0$, but increase for $\alpha<0$. Flow statistics as well as instantaneous flow folds are presented to identify the characteristics of the flow and then to understand the underlying mechanism.