• Title/Summary/Keyword: Cotton Stalk

Search Result 8, Processing Time 0.021 seconds

Effect of dietary cotton stalk on nitrogen and free gossypol metabolism in sheep

  • Rehemujiang, Halidai;Yimamu, Aibibula;Wang, Yong Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.233-240
    • /
    • 2019
  • Objective: This study was to investigate the effects of dietary cotton stalk on nitrogen and free gossypol in sheep. Methods: Treatments included 25% cotton stalk (Treat 1), 50% cotton stalk (Treat 2), and a control (no cotton stalk). Six Xinjiang daolang wethers were cannulated at the rumen and duodenum and fed one of these diets. The effects of these diets on nitrogen and free gossypol absorption and metabolism were determined. Fifteen healthy Xinjiang daolang wethers were assessed for daily gain, tissue lesions, and free gossypol accumulation. Results: Dry matter intake decreased with increasing dietary cotton stalk. Total tract dry matter digestibility did not significantly differ among treatments. Dietary cotton stalk significantly decreased volatile fatty acids and increased ammonium nitrogen in the rumen. Nitrogen intake was significantly higher in Treat 2 than in the control or Treat 1. Nitrogen retention and free gossypol intake increased with dietary cotton stalk. Duodenal free gossypol flow did not increase, and free gossypol almost disappeared from the rumen. The free gossypol content of plasma and tissue was increased with dietary cotton stalk with liver free gossypol>muscle free gossypol>kidney free gossypol. Elevated dietary free gossypol decreased platelets, hemoglobin, and serum iron. Aspartate aminotransferase and ${\gamma}$-glutamyltransferase increased in Treat 2. With high long-term dietary cotton stalk intake, liver cells were swollen, and their nuclei dissolved. Renal cells were necrotic and the interstitia were enlarged. Conclusion: With short-term cotton stalk administration, only a small amount of free gossypol is retained in the body. In response to long-term or high free gossypol cotton stalk feeding, however, free gossypol accumulates in, and damages the liver and kidneys.

Mycelial growth of oyster mushroom by substrates of water-hyacinth and banana leaf and stalk (부레옥잠과 바나나 잎, 줄기를 사용한 배지에서의 느타리버섯 균사생장)

  • Chang, Hyun-You;Lee, Sun-Een;Noh, Mun-Ki
    • Journal of Mushroom
    • /
    • v.7 no.2
    • /
    • pp.45-48
    • /
    • 2009
  • This research was carried out to clarify the feasibility of using the banana leaf and stalk and water hyacinth by substrate of oyster mushroom. The 100% cotton, water hyacinth, banana leaf and stalk was used as a mushroom media respectively. The growth of fungi was observed after 15 days and showed 115mm in the cottonseed hull, 80mm in the water hyacinth, and 72mm in the banana leaf and stalk. In the mixed substrate that added water hyacinth to cottonseed hull with the rate of 20, 50, 80% the growth was observed with 115, 103, 62mm respectively. In case of the banana mixed substrate the results was appeared with 106, 89, 78mm respectively. In the pure substrate the cottonseed hull's mycelial growth was the fastest and in the case of mixed substrate with water hyacinth 20% and cotton 80% was the fastest growth.

  • PDF

Effect of Culture Medium, Temperature, and Light Intensity on PLB Propagation of Phalaenopsis (팔레높시스의 PLB 증식에 미치는 배지와 배양온도 및 광도의 영향)

  • 김미선;은종선;김재영
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.4
    • /
    • pp.215-219
    • /
    • 2001
  • This study was conducted to investigate the effect of culture media and environment on PLB proliferation by using PLBs produced from leaf segments excised from shoot of Phalanopsis flower stalk. The fresh weight of PLBs propagated was higher in MS medium than in NDM (New Dogashima medium) or VW, but the condition of PLB was better in NDM medium. Natural additives of Coconut water, potato and apple were absolutely required for the PLB propagation. PLB propagation was better in solid medium than in liquid medium including cotton as support. Optimal sucrose concentration for proliferation was 10 g/L. PLB proliferation was very effective condition 14.3 $\mu$mol.s$^{-1}$ m$^{-2}$ in PPFD and $25^{\circ}C$.

  • PDF

Effects of Fertilizer Levels and Plant Densities on Flowering and Bolling in Cotton (시비량과 재식밀도가 목화의 개화 및 결삭에 미치는 영향)

  • 김상곤;박홍재;성병열;정동희
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.5
    • /
    • pp.436-441
    • /
    • 1992
  • This study was carried out to discuss the influences of the different fertilizer levels and plant densities on the flowering and balling in cotton in Mokpo Branch Station, Crop Experiment Station in 1991. The cotton flowered 67% before Aug. 25 which is the limit date of picked-cotton harvest, and the ratio of flowering for stalk-cut cotton was 30%. The 1.5 times fertilizer levels and the 70cm row density had more flower buds, flowers and bolls per m$^2$ than any other treatment plot. The crop growing was bad in dense planting due to the nutrient deficiency. The flowering ratio to flower bud was about 70%, and the balling ratio to flower numbers was about 48%. The bolling ratio was lower in the case of more flower number. The shedding ratio of flower buds was about 30% in average and showed increasing tendency by dense planting. It was observed that the higher ratio of bud shedding tended to accompany with shedding the lower ratio of boll shedding.

  • PDF

Agrobacterium Mediated Transformation of Rehmannia glutinosa L. with Glutathione S-Transferase Gene (Gh-5)

  • Lim, Jung-Dae;Sung, Eun-Soo;Yang, Deok-Chun;Yun, Song-Joong;Chung, Ill-Min;Kim, Myong-Jo;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.4
    • /
    • pp.289-297
    • /
    • 2003
  • Using Agrobacterium-me야ated transformation method the auxin-regulated cotton GST (Gh-5) constructs were used to transform Rehmannia glutinosa L. The PCR analysis was conducted to verify transgenicity. Based on the PCR analysis, there was verified that the 988 bp DNA band had showed in transgenic plant genomes in PCR anaJysis using Gh5-1 and Gh5-2 primers. The effects of cocultivation with Agrobacterium tumefaciens, regeneration and selection conditions on the transformation efficiency of Chinese foxglove (Rehmannia glutinosa L.) were investigated. Factors such as cocultivation period, use of acetosyringone, postcultivation in darkness, and different kanamycin concentrations for selection were assessed. In vitro regeneration, the number of leaves, shoot lengths and numbers on MS medium were superior to on B5 and WPM medium, and the shoot formation rate was highest level of 95% in cultured base part containing leaf stalk. Addition of acetosyringone at concentration of $200{\mu}M$ to cocultivation medium and 3-day of cocultivation improved transformation frequencies. Exposure of explants to darkness for 4 weeks on selection medium resulted in further increased the regeneration frequency of transgenic shoots. In PCR analysis, the amplified fragments of Gh5 gene were detected (988 bp), and GST-expressing transgenic R. glutinosa L. plants had approximately three-fold higher activity in leaf extracts compared with control plant.

Distribution of Habitats and Ecology of Weedy Melons (Cucumis melo var. agrestis Naud.) in Korea (우리나라 야생잡초 참외의 자생지 분포지역 및 생태)

  • Lee, Woo-Sung
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.652-655
    • /
    • 2013
  • Natural habitats of weedy melons were distributed on the islands along and on the west and south coasts of Korean peninsula including Boryeong, Seosan (Taean), Seocheon, Okgu, Buan, Gochang, Yeonggwang, Muan, Shinan, Haenam, Jindo, Wando, Goheung, Yeocheon, Hadong, Namhae, Goseong, Tongyeong, Geoje, and Jeju islands including Jeju city, Bukjeju-gun and Nam Jeju-gun. Weedy melons were found growing wildly in or around the cultivated lands in these regions. Natural habitats of weedy melons were in and around the cultivated lands. Weedy melon plants were found most often in soybean fields, followed by fields of mungbean, sweet potato, pepper, sesame, cotton, and peanuts. The plants were also found growing wild in foxtail millet fields, rice paddy levees along the streams, upland field edges, watermelon fields, corn fields, vegetable gardens near farmhouse, orange fields, compost piles, fallow fields, roadside and home gardens. They inhabited in sunny and a little dry spaces in relatively low-height crop plant fields in general. The time of fruit maturity was from early July to late October with the most frequency in September according to post survey answer. Fruits dropped off from the fruit stalk when matured. This phenomenon was thought beneficial for perpetuation in the wild. The fruits were being used commonly for food and toys for children. It was thought that weedy melons were perpetuating through the cycle of human and animal feeding of the fruits, human and animal droppings, often mixed in compost, and application of the compost to crop fields by human.

Sawdust Substitution in Growth Medium of Oyster Mushroom for Using Its By-product Spent Mushroom Substrates as Ruminant Feed (수확 후 배지의 가축 사료화를 위한 느타리 생육배지 톱밥 대체재료 선발 연구)

  • Kim, Jeong-Han;Jang, Myoung-Jun
    • The Korean Journal of Mycology
    • /
    • v.48 no.4
    • /
    • pp.407-414
    • /
    • 2020
  • To replace the sawdust in the growth medium of oyster mushroom to utilize its by-product spent mushroom substrates (SMS) as feed for ruminant, we performed cultivation test using cotton seed hull pellet (CSHP), corn stalk pellet (CSP), corncob (CC), and analyzed the feed chemical properties of those SMS. As a result of cultivation test, CC and CSHP treatment took 27 days for spawn run, 4 days for primordium formation, and 3 days for development fruiting bodies, resulting in a total cultivation period of 34 days. The yield per bottle was 134 g for CC treatment, similar to 130 g for control, while CSHP treatment (112 g) and CSP treatment (68 g) were lower than that of control. The highest biological efficiency (BE) was shown in CC treatment as 80.1%, which was 11.4% higher than 68.7% of control. The SMS of CC treatment had a relatively low content of neutral detergent fiber and acid detergent fiber, and in particular, lignin content was the lowest and crude protein content was the highest among other treatments. Therefore, CC as a substitute material for sawdust was capable of stable mushroom production and excellent nutritional value as a feed for its by-products.