• Title/Summary/Keyword: Costal salt marsh

Search Result 3, Processing Time 0.018 seconds

Plant Diversity and Conservation of Salt Marsh in Nonhyun-Dong, Inchoen (인천 논현동 일대 염습지의 식물다양성과 보존방안)

  • 정주영;이만우;조강현;최병희
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.3
    • /
    • pp.337-345
    • /
    • 2000
  • The flora and vegetation of salt marsh region in Nonhyun-dong, Incheon were investigated from June 1999 to June 2000. The surveyed region includes the several abandoned salt farms and natural salt marshes developing along the intertidal zone at the stream of the Sorae Inlet, Yellow Sea and is going to be constructed a costal ecopark. In this survey 14 species of halophytes were collected in the region, among them Suaeda maritima is the most common one, Salicornia herbacea, Artemisia scoparnia and Aster tripolium are also observed popularly. The flora of the abandoned salt farms is very similar to that of the natural salt marshes. However, the bank areas between the abandoned salt farms and the natural salt marshes showed more richness of species diversity including 21 naturalized plants. The vegetations on the natural salt marshes are mainly composed of Suaeda maritima -Artemisia scoparnia and Suaeda maritima communities. On the other hand, various plant communities were investigated in the abandoned salt farms such as Suaeda maritima-Salicornia herbacea, Phragmites communis-Typha angustata, Suaeda asparagoides -Suaeda maritima and Phragmites communis communities. Based on the plant physiognomy and species diversity, the region can be divided into three types of area for conservation, that is, the area composed of well-developed vegetation, disturbed one by human activities and plant withering area. Futhermore, according to the construction of the costal ecopark in the region the conservation scheme for each area was discssed.

  • PDF

Sediment Properties and Growth of Phragmites australis in Mud Tidal Flat (조간대 저토 환경과 갈대의 생장 특성)

  • Min, Byeong Mee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.3
    • /
    • pp.57-69
    • /
    • 2011
  • This study examined the relationship between Phragmites australis' growth and sediment properties at mud tidal flat of Donggum-ri, Gilsang-myeon, Gangwha-gun, Incheon city. Field survey was carried out from May, 2010 to October, 2010. Water content, soil texture, electric conductivity and water table depth for sediment, density, height, dry weight and flowering for P. australis were examined at several plots from the starting point (the coastal embankment) to the end point of the two populations. The result was as follows. Firstly, the water table increased along distance from the embankment at one line (N-line) but was similar at the other line (S-line) in a P. asustralis population. Water tables were higher out of than within a P. australis population at two populations. Secondary, in N-line, the height and dry weight of P. australis decreased along the distance from embankment but, in S-line, those were similar in its population. P. australis' growth was dependent on electric conductivity at lower layer (water table level) rather than upper one (the surface). Thirdly, density of P. australis changed during growing season and was similar in a population, except for the end point of patch. In summary, the growth and distribution of P. australis were dependent on salt content of tidal flat's sediment (water table level) and this was affected by fresh water of the inland.

Inorganic and Organic Solute Pattern of Costal Plants, Korea (해안 식물의 무기 및 유기용질 양상)

  • Choi, Sung-Chul;Bae, Jung-Jin;Choo, Yeon-Sik
    • The Korean Journal of Ecology
    • /
    • v.27 no.6 s.122
    • /
    • pp.355-361
    • /
    • 2004
  • In order to elucidate the ecophysiological characteristics of coastal plants, we collected them on salt marsh and sand dune, and analyzed inorganic ($Na^+,\;K^+,\;Mg^{2+},\;Ca^{2+}$) and organic solutes (soluble carbohydrate, glycine betaine). Chenopodiaceous plant species (Atriplex gmelini, Salicornia europaea, Salsola collina, Suaeda glauca, Suaeda japonica) showed a tendency to accumulate inorganic ions such as $Na^+\;and\;Cl^-$ instead of $K^+$. However, Chenopodium serotinum which lives in ruderal habitat contained more $K^+$ and less $Na^+$ than the other Chenopodiaceous plants. Most Chenopodiaceous plant species maintained very low level of soluble $Ca^{2+}$ and relatively low concentration of carbohydrates and showed high concentration of glycine betaine which is among the most effective known compatible solutes in the leaves of plant under drought and saline conditions. On the other hand, plant species which belong to Gramineae (Ishaemum anthephoroides, Phragmites communis, Zoysia sinica) and Cyperaceae (Carex kobomugi, Carex pumila) absorbed $K^+$ selectively and excluded $Na^+\;and\;Cl^-$ effectively regardless of habitat conditions, and they accumulated more soluble carbohydrate as osmoticum than Chenopodiaceous plants. These results suggested that physiological characteristics such as high storage capacity for inorganic ions (especially alkali cations, chloride) and the accumulation of glycine betaine in chenopodiaceous plants and $K^+$-preponderance, an efficient regulation of ionic uptake (exclusion of $Na^+\;and\;Cl^-$) and the accumulation of soluble carbohydrate in monocotyledonous plants enable them to grow dry and saline habitats.