• Title/Summary/Keyword: Cost-Sensitive Boosting

Search Result 2, Processing Time 0.02 seconds

Classification of Class-Imbalanced Data: Effect of Over-sampling and Under-sampling of Training Data (계급불균형자료의 분류: 훈련표본 구성방법에 따른 효과)

  • 김지현;정종빈
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.3
    • /
    • pp.445-457
    • /
    • 2004
  • Given class-imbalanced data in two-class classification problem, we often do over-sampling and/or under-sampling of training data to make it balanced. We investigate the validity of such practice. Also we study the effect of such sampling practice on boosting of classification trees. Through experiments on twelve real datasets it is observed that keeping the natural distribution of training data is the best way if you plan to apply boosting methods to class-imbalanced data.

Effective Harmony Search-Based Optimization of Cost-Sensitive Boosting for Improving the Performance of Cross-Project Defect Prediction (교차 프로젝트 결함 예측 성능 향상을 위한 효과적인 하모니 검색 기반 비용 민감 부스팅 최적화)

  • Ryu, Duksan;Baik, Jongmoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.3
    • /
    • pp.77-90
    • /
    • 2018
  • Software Defect Prediction (SDP) is a field of study that identifies defective modules. With insufficient local data, a company can exploit Cross-Project Defect Prediction (CPDP), a way to build a classifier using dataset collected from other companies. Most machine learning algorithms for SDP have used more than one parameter that significantly affects prediction performance depending on different values. The objective of this study is to propose a parameter selection technique to enhance the performance of CPDP. Using a Harmony Search algorithm (HS), our approach tunes parameters of cost-sensitive boosting, a method to tackle class imbalance causing the difficulty of prediction. According to distributional characteristics, parameter ranges and constraint rules between parameters are defined and applied to HS. The proposed approach is compared with three CPDP methods and a Within-Project Defect Prediction (WPDP) method over fifteen target projects. The experimental results indicate that the proposed model outperforms the other CPDP methods in the context of class imbalance. Unlike the previous researches showing high probability of false alarm or low probability of detection, our approach provides acceptable high PD and low PF while providing high overall performance. It also provides similar performance compared with WPDP.