• 제목/요약/키워드: Cost of photovoltaic power generation

검색결과 113건 처리시간 0.026초

태양광 대량보급 시대의 기술개발 (Technology Development in the Era of Photovoltaic Mass Supply)

  • 조은철;송재천;조영현;이준신
    • Current Photovoltaic Research
    • /
    • 제6권4호
    • /
    • pp.124-132
    • /
    • 2018
  • The Korean electric power supply plan was prepared by greatly enhancing the environmental and safety with considering the economical efficiency of the electric equipment, the impact on the environment and the public safety. As a result, the fossil energy-based power generation sector is accelerating the paradigm shift to eco-friendly energy such as solar power and wind. Also the solar power industry is expected to grow into a super large-sized industry by converging the energy storage and electric vehicle industry. Generally, a levelized cost of electricity (LCOE) is used to calculate the power generation cost for different generation power generation efficiency, operating cost, and life span. In this paper, we have studied the future research and development direction of photovoltaic technology development for the era of massive utilization of photovoltaic solar power, and have studied the LCOE of major countries including China, USA, Germany, Japan and Korea. Finally we have reviewed USA and Japan research programs to reduce the LCOE.

장기 Outdoor Test를 통한 CPV와 PV 모듈의 발전량 비교분석 (A study of Comparative Analysis of CPV and PV Module through Long-term Outdoor Testing)

  • 김민수;이유리;조민제;오수영;정재학
    • Current Photovoltaic Research
    • /
    • 제5권1호
    • /
    • pp.33-37
    • /
    • 2017
  • Today, photovoltaic power generation mostly uses Si crystalline solar cell modules. The most vulnerable part of the Si solar cell module is that the power generation decreases due to the temperature rise. But, it is widely used because of low installation cost. In the solar market, where Si crystalline solar cell modules are widely used. The CPV (Concentrated Photovoltaic) module appeared in the solar market. The CPV module reduces the manufacturing cost of the solar cell by using non-Si in the solar cell. Also, there is an advantage that a rise in temperature does not cause a drop in power generation. But this requires high technology to install and has a disadvantage that the initial installation cost is expensive compared to normal Si solar cell module. So that we built a testbed to see these characteristics. The testbed was used to measure the amount of power generation in a long-term outdoor environment and compared with the general Si solar cell module.

Reduce on the Cost of Photovoltaic Power Generation for Polycrystalline Silicon Solar Cells by Double Printing of Ag/Cu Front Contact Layer

  • Peng, Zhuoyin;Liu, Zhou;Chen, Jianlin;Liao, Lida;Chen, Jian;Li, Cong;Li, Wei
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.718-724
    • /
    • 2018
  • With the development of photovoltaic industry, the cost of photovoltaic power generation has become the significant issue. And the metallization process has decided the cost of original materials and photovoltaic efficiency of the solar cells. Nowadays, double printing process has been introduced instead of one-step printing process for front contact of polycrystalline silicon solar cells, which can effectively improve the photovoltaic conversion efficiency of silicon solar cells. Here, the relative cheap Cu paste has replaced the expensive Ag paste to form Ag/Cu composite front contact of silicon solar cells. The photovoltaic performance and the cost of photovoltaic power generation have been investigated. With the optimization on structure and height of Cu finger layer for Ag/Cu composite double-printed front contact, the silicon solar cells have exhibited a photovoltaic conversion efficiency of 18.41%, which has reduced 3.42 cent per Watt for the cost of photovoltaic power generation.

탄소의 사회적 비용에 따른 수상 태양광 사업의 경제성 변화 (Changes in the Economic Feasibility of a Floating Photovoltaics Project due to the Social Cost of Carbon)

  • 임재준;김진수
    • 신재생에너지
    • /
    • 제20권1호
    • /
    • pp.26-37
    • /
    • 2024
  • Renewable energy sources play a key role in achieving carbon neutrality and zero net emissions in the power generation sector. Various efforts have been made to support the deployment of renewable energy, particularly solar photovoltaic and wind power, including policies to internalize the external cost of carbon emissions. In this study, we conducted a financial analysis of a 800 MW floating photovoltaic system and compared it with ground solar power generation. Additionally, we conducted a cost-benefit analysis that included the social cost of carbon. The findings showed that the floating photovoltaic project can meet the profitability target through an appropriately designed internalization of the social cost of carbon.

태양광발전시스템의 장기운전에 의한 성능특성 분석 (The Long-term Operating Evaluation of the Grid Connected Photovoltaic System)

  • 김의환;강승원;김재언
    • 신재생에너지
    • /
    • 제7권2호
    • /
    • pp.28-35
    • /
    • 2011
  • Recently, photovoltaic systems have been devolved into much larger systems up to MW-scale. Photovoltaic industry participants give their focus on power generation capability of photovoltaic modules because their benefits can be decided from the amount of generation. The information on long-term performance change of photovoltaic modules helps to estimate the amount of power generation and evaluate the economic cost-benefits. Long-term performance of a PV system has been analyzed with operation data for 12 years from 1999 to 2010. In the first year, the amount of yearly power generation was 57.7 MWh with 13.2% capacity factor. In 2007, the amount of yearly generation was 44.3 MWh with 10.14% capacity factor, and in 2010, the amount was decreased down to 38.1 MWh with 8.7% capacity factor. The result means that long-term capacity factor has been 4.5% decreased for 12 years and that the amount of generation has been decreased 34.0% for 12 years which is 2.8 % per year. The latter capacity factor has been decreased faster than 0.20%, the average rate for 10 years. The performance decrease of the PV system is meant to be accelerated. The decrease of performance and utilization is due to aged deterioration of photovoltaic modules and lowering conversion efficiency of PCS.

3kW급 추적식 태양광발전 시스템 개발 (3W PV Generation System Development with Solar Tracker)

  • 강신영;박규남;박성용;김광헌
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.687-691
    • /
    • 2003
  • In photovoltaic generation, PV module is used to generate the electricity, and this system has been in limelight as nonpolluting alternative energy source. But, as energy density is low and PV module cost is high, there is a disadvantage that initial investment cost go up. In this study, we studied the method of allowing a tracker, adequate to photovoltaic generation, for Increasing the generating. We determined the proper error angle in order to decrease the repeating number of tracking without a reduction of the generating by using our developed simulator. And, we presented the photovoltaic approach tracking control and achieved its experiment. Through the result of experiment, it is expected that the fault rate and the consumption of electric power in a tracker get reduced and its cost become cut down.

  • PDF

태양광 발전 연계 수전해 시스템의 경제성 분석 (Techno-Economic Analysis of Water Electrolysis System Connected with Photovoltaic Power Generation)

  • 황순철;박진남
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.477-482
    • /
    • 2021
  • Hydrogen production, hydrogen production cost, and utilization rate were calculated assuming four cases of hydrogen production system in combination of photovoltaic power generation (PV), water electrolysis system (WE), battery energy storage system (BESS), and power grid. In the case of using the PV and WE in direct connection, the smaller the capacity of the WE, the higher the capacity factor rate and the lower the hydrogen production cost. When PV and WE are directly connected, hydrogen production occurs intermittently according to time zones and seasons. In addition to the connection of PV and WE, if BESS and power grid connection are added, the capacity factor of WE can be 100%, and stable hydrogen production is possible. If BESS is additionally installed, hydrogen production cost increases due to increase in Capital Expenditures, and Operating Expenditure also increases slightly due to charging and discharging loss. Even in a hydrogen production system that connects PV and WE, linking with power grid is advantageous in terms of stable hydrogen production and improvement of capacity factor.

미 전화 도서 자가 발전방식 도입에 따른 경제성 검토 (Economic Evaluation on a private electric Generation Application in Unelectrified Remote Islands in Korea)

  • 안교상;임희천;임영창
    • 한국수소및신에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.348-358
    • /
    • 2003
  • According to Electricity Acceleration Law of Rural Area recently, the needs for replacement of a small scale diesel power generation facility which supplied electricity to 10-50 households Remote Islands has been revealed due to high operating and maintenance cost of Diesel Power Generation. Optimization of electric power system for Small Remote Islands must be made considering the economics, reliability and stability as power sources and estimation of total construction cost of those power stations. For its purpose, an assessment of power generation options such as Photovoltaic, Fuel cell, Wind-hybrid was implemented, economic evaluation of power supply shows the Photovoltaic, Fuel Cell for few household's islands and Diesel, Wind-hybrid for more inhabited islands. Power supplied by Diesel shows the best response to increasing electric demand and system reliability even with its lower economic value. Those who are in charge of power planning have to pay attention to system reliability, stability and operating characteristics of candidate's power supply besides its economics.

태양광 모듈 출력 보상을 위한 마이크로컨버터 시제품 동작 특성 분석 (Characteristics Analysis of Proto-type Microconverter for Power Output Compensation of Photovoltaic Modules)

  • 김지현;김주희;이정준;박종성;김창헌
    • Current Photovoltaic Research
    • /
    • 제10권4호
    • /
    • pp.133-137
    • /
    • 2022
  • The economic feasibility of a photovoltaic (PV) system is greatly influenced by the initial investment cost for system installation. Also, electricity generation by PV system is highly important. The profits competitiveness of PV system will be maximized through intelligent operation and maintenance (O&M). Here, we developed a microconverter which can maximize electricity generation from PV modules by tracking the maximum power point of PV modules, and help efficient O&M. Also, the microconverter mitigates current mismatch caused by shading, hence maximize power generation. The microconverters were installed PV modules and demonstrated through the field tests. Power outputs such as voltage, string current were measured with variuos weather environments and partial shadings. We found that PV modules with the microconvertors shows 12.05% higher power generation compared to the reference PV modules.

무동력 약품투입기를 위한 태양광발전시스템의 개발 (A Development of Photovoltaic power generation for No-power Chlorine injector)

  • 이현우;고강훈
    • 조명전기설비학회논문지
    • /
    • 제17권4호
    • /
    • pp.45-49
    • /
    • 2003
  • 인류 문화의 발달에 따라 산업의 원동력인 전기에너지의 사용 빈도는 급속히 증가되면서 기존 에너지원인 화석 에너지원의 고갈과 환경문제로 인한 새로운 전기에너지원으로 태양광 발전 시스템의 도입이 점점 고조되고 있다. 본 논문에서는 무전원 약품투입기를 설계하였다. 이 시스템은 태양광 발전 시스템을 사용함으로서 그 결과 저비용과 안정된 시스템을 확보하였다.