• Title/Summary/Keyword: Cosmic void

Search Result 9, Processing Time 0.024 seconds

The clustering of critical points in the evolving cosmic web

  • Shim, Junsup;Codis, Sandrine;Pichon, Christophe;Pogosyan, Dmitri;Cadiou, Corentin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2021
  • Focusing on both small separations and baryonic acoustic oscillation scales, the cosmic evolution of the clustering properties of peak, void, wall, and filament-type critical points is measured using two-point correlation functions in ΛCDM dark matter simulations as a function of their relative rarity. A qualitative comparison to the corresponding theory for Gaussian random fields allows us to understand the following observed features: (i) the appearance of an exclusion zone at small separation, whose size depends both on rarity and signature (i.e. the number of negative eigenvalues) of the critical points involved; (ii) the amplification of the baryonic acoustic oscillation bump with rarity and its reversal for cross-correlations involving negatively biased critical points; (iii) the orientation-dependent small-separation divergence of the cross-correlations of peaks and filaments (respectively voids and walls) that reflects the relative loci of such points in the filament's (respectively wall's) eigenframe. The (cross-) correlations involving the most non-linear critical points (peaks, voids) display significant variation with redshift, while those involving less non-linear critical points seem mostly insensitive to redshift evolution, which should prove advantageous to model. The ratios of distances to the maxima of the peak-to-wall and peak-to-void over that of the peak-to-filament cross-correlation are ~2-√~2 and ~3-√~3WJ, respectively, which could be interpreted as the cosmic crystal being on average close to a cubic lattice. The insensitivity to redshift evolution suggests that the absolute and relative clustering of critical points could become a topologically robust alternative to standard clustering techniques when analysing upcoming surveys such as Euclid or Large Synoptic Survey Telescope (LSST).

  • PDF

Identifying Cosmic Voids using Clusters as the Antipode

  • Shim, Junsup;Park, Changbom;Kim, Juhan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.40.1-40.1
    • /
    • 2019
  • We report progress on identifying cosmic voids using cluster halos as the antipode. According to the standard scenario of structure formation, clusters are expected to form at peaks of the initial density field, whereas cosmic voids form at troughs. Then, a cluster would be a void if the sign of the initial density fluctuation of the universe were inverted. To study the relevance of anti-structures of clusters to cosmic voids, we use a pair of simulations whose initial density fields are sign inverted versions to each other. By examining the spatial distribution and environment of the particles in inverted simulation, which are the member particles of clusters in the other simulation, we discuss the characteristics of the antipode structures of clusters including their size, density, internal structure, and redshift evolution as well.

  • PDF

A Survey for Globular Clusters in Cosmic Void Galaxies

  • Sohn, Jubee;Lee, Myung Gyoon;Ko, Youkyung;Lim, Sungsoon;Park, Hong Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.45.2-45.2
    • /
    • 2014
  • We carry out the first survey for globular clusters (GCs) of three galaxies in cosmic voids using Hubble Space Telescope (HST) Advanced Camera for Survey archival F606W and F814W images. While all sample galaxies are classified as early-type galaxies based on ground-based imaging, the high resolution HST images reveal that they are actually spiral galaxies. We identify the point sources with red colors typical for GCs as GC candidates in the color-magnitude diagrams. As a result, we find a significant number of GC candidates. The spatial and radial distribution of GCs show central concentration on each galaxy region. Their mean colors are similar to that of the Milky Way and M31 GCs. The void GCs are somewhat bluer by, and than cluster and field GCs in early-type galaxies with similar luminosity to our samples, but the discrepancy is not significant. We also estimate the specific frequencies of GCs in these galaxies and the values are consistent with those in field and cluster galaxies with similar luminosity. From these results, we suggest that the formation process of void GCs is similar to that of GCs in other environments. The further implications will be discussed.

  • PDF

Dependence of galaxy properties on void filament straightness

  • Shim, Junsup;Lee, Jounghun;Hoyle, Fiona
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.44.4-45
    • /
    • 2015
  • We investigate the properties of galaxies belonging to the filaments in cosmic void regions, using the void catalogue constructed by Pan et al. (2012) from the SDSS DR7. To identify galaxy filaments within a void, voids with 30 or more galaxies are selected as a sample. We identify 3067 filaments in 1050 voids by applying the filament finding algorithm based on minimal spanning tree and reducing processes to spatial distribution of the void galaxies. We study the correlations between galaxy properties and the specific size of filament which quantifies the degree of the filament straightness. For example, the average magnitude and the magnitude of the faintest galaxy in filament decrease as the straightness of the filament increases. We also find that the correlations become stronger in rich filaments than in poor ones with fewer member galaxies. We discuss a physical explanation to our findings and their cosmological implications.

  • PDF

VOIDS LENSING OF THE CMB AT HIGH RESOLUTION

  • SANGKA, ANUT;SAWANGWIT, UTANE;SANGUANSAK, NUANWAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.397-399
    • /
    • 2015
  • Recently, cosmic voids have been recognized as a powerful cosmological probe. A number of studies have focused on the effects of the gravitational lensing by voids on the temperature (and in some cases polarization) anisotropy of the Cosmic Microwave Background (CMB) background at relatively large to medium scales, l ~ 1000. Many of these studies attempt to explain the unusually large cold spot in CMB temperature maps and dynamical evidence of dark energy via detections of late-time integrated Sachs Wolfe (ISW) effect. Here, the effects of lensing by voids on the CMB temperature anisotropy at small scales, up to l = 3000, will be investigated. This work is carried out in the light of the benefits of adding large catalogues of cosmic voids, to be identified by future large galaxy surveys such as EUCLID and LSST, to the analysis of CMB data such as those from Planck mission. Our numerical simulation utilizes two methods, namely, the small-de ectionangle approximation and full ray-tracing analysis. Using the fitted void density profiles and radius (RV ) distribution available in the literature from N-body simulations, we simulated the secondary temperature anisotropy (lensing) of CMB photons induced by voids along a line of sight from redshift 0 to 2. Each line of sight contains approximately 1000 voids of effective radius $RV_{,eff}=35h^{-1}Mpc$ with randomly distributed radial and projected positions. Both methods are used to generate temperature maps. The two methods will be compared for their accuracy and effciency in the implementation of theoretical modeling.

Identification of Cosmic Voids as Massive Cluster Counterparts

  • Shim, Junsup;Park, Changbom;Kim, Juhan;Hwang, Ho Seong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.48.2-48.2
    • /
    • 2020
  • We present a new void definition that connects voids with clusters, the high-density counterpart. We use a pair of ΛCDM simulations whose initial density fields are sign inverted versions to each other, and study the relation between the effective void volume and the corresponding cluster mass. Massive cluster halos (M ≥ 1013M⊙/h) are identified in one simulation at z=0 by linking dark matter particles. The corresponding void to each cluster is defined in the other simulation as the region occupied by the member particles of the cluster. We find a universal functional form of density profiles at z=0 and 1. We also find a power-law relation between the void effective radius and the corresponding cluster mass. Based on these findings, we identify cluster-counterpart voids directly from a density field without using the pair information by utilizing three parameters such as the smoothing scale, density threshold, and minimum core fraction. We identified voids corresponding to clusters more massive than M ≥ 3 × 1014M⊙/h at approximately 70-74 \% level of completeness and reliability. Our results suggest that we can detect voids comparable to clusters of a particular mass-scale.

  • PDF

Method for Identifying Lava Tubes Among Pit Craters Using Brightness Profile Across Pits on the Moon or Mars

  • Jung, Jongil;Hong, Ik-Seon;Cho, Eunjin;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • Caves can serve as major outposts for future human exploration of the Moon and Mars. In addition, caves can protect people and electronic equipment from external hazards such as cosmic ray radiation and meteorites impacts and serve as a shelter. Numerous pit craters have been discovered on the Moon and Mars and are potential entrances to caves; the principal topographic features of pit craters are their visible internal floors and pits with vertical walls. We have devised two topographical models for investigating the relationship between the topographical characteristics and the inner void of pit craters. One of our models is a concave floor void model and the other is a convex floor tube model. For each model, optical photographs have been obtained under conditions similar to those in which optical photographs have been acquired for craters on the Moon and Mars. Brightness profiles were analyzed for determining the profile patterns of the void pit craters. The profile patterns were compared to the brightness profiles of Martian pit craters, because no good-quality images of lunar pit craters were available. In future studies, the model profile patterns will be compared to those of lunar pit craters, and the proposed method will likely become useful for finding lunar caves and consequently for planning lunar bases for manned lunar expeditions.

The Topology of Galaxy Clustering in the Sloan Digital Sky Survey Main Galaxy Sample: a Test for Galaxy Formation Models

  • Choi, Yun-Young;Park, Chang-Bom;Kim, Ju-Han;Weinberg, David H.;Kim, Sung-Soo S.;Gott III, J. Richard;Vogeley, Michael S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.82-82
    • /
    • 2010
  • We measure the topology of the galaxy distribution using the Seventh Data Release of the Sloan Digital Sky Survey (SDSS DR7), examining the dependence of galaxy clustering topology on galaxy properties. The observational results are used to test galaxy formation models. A volume-limited sample defined by Mr<-20.19 enables us to measure the genus curve with amplitude of G=378 at 6h-1Mpc smoothing scale, with 4.8% uncertainty including all systematics and cosmic variance. The clustering topology over the smoothing length interval from 6 to 10h-1Mpc reveals a mild scale-dependence for the shift and void abundance (A_V) parameters of the genus curve. We find strong bias in the topology of galaxy clustering with respect to the predicted topology of the matter distribution, which is also scale-dependent. The luminosity dependence of galaxy clustering topology discovered by Park et al. (2005) is confirmed: the distribution of relatively brighter galaxies shows a greater prevalence of isolated clusters and more percolated voids. We find that galaxy clustering topology depends also on morphology and color. Even though early (late)-type galaxies show topology similar to that of red (blue) galaxies, the morphology dependence of topology is not identical to the color dependence. In particular, the void abundance parameter A_V depends on morphology more strongly than on color. We test five galaxy assignment schemes applied to cosmological N-body simulations to generate mock galaxies: the Halo-Galaxy one-to-one Correspondence (HGC) model, the Halo Occupation Distribution (HOD) model, and three implementations of Semi-Analytic Models (SAMs). None of the models reproduces all aspects of the observed clustering topology; the deviations vary from one model to another but include statistically significant discrepancies in the abundance of isolated voids or isolated clusters and the amplitude and overall shift of the genus curve. SAM predictions of the topology color-dependence are usually correct in sign but incorrect in magnitude.

  • PDF