• 제목/요약/키워드: Cosmic rays

검색결과 127건 처리시간 0.027초

Strong Accretion Shock Waves in Cluster Outskirts and Possibility of Cosmic-Ray Population Inversion

  • 홍성욱;류동수;강혜성
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.72.2-72.2
    • /
    • 2012
  • We analyzed the properties of shock waves in galaxy clusters, by using the data of simulations for the large-scale structure of the universe with the spatial resolution of up to 25 kpc/h. In a substantial fraction of clusters, we found that strong shocks with Mach number of several or larger exist in outskirts within the virial radius. They are produced by the accretion of warm gas flowing from filaments to clusters, and generate large cosmic-ray fluxes. The cosmic rays advect into cluster cores, but may temporally induce the population inversion, that is, larger population at larger radius, suggested by recent radio and ${\gamma}$-ray observations.

  • PDF

High-energy Photons and Particles in Space Environment

  • Ohno, Shin-ichi
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.170-173
    • /
    • 2002
  • Space is full of energetic events emitting high-energy radiations which may be fatal to all living things unless protected. The present paper briefly describes high-energy photons and particles incident on Earth surface and their common properties toward living things. Role of radiation played in evolution of life and earth environment will be presented.

  • PDF

X-RAYING LARGE-SCALE STRUCTURE

  • HENRY J. PATRICK
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.371-374
    • /
    • 2004
  • We review the observational evidence for the existence of a warm-hot intergalactic medium (WHIM). We expect that the morphology of this material is similar to that of cosmic rays and magnetic fields in large-scale structure, i.e., filaments connecting clusters of galaxies. Direct evidence for the WHIM, either in emission or absorption, is weak.

범용 실리콘 방사선 센서를 이용한 우주방사선 선량계 개발 (Developments of Space Radiation Dosimeter using Commercial Si Radiation Sensor)

  • 천종규;김성환
    • 한국방사선학회논문지
    • /
    • 제17권3호
    • /
    • pp.367-373
    • /
    • 2023
  • 비행시 승무원이나 승객은 우주방사선과 공기나 비행기 기체와 반응하여 발생한 2차 산란선 등에 의해 피폭을 받게 된다. 항공기 승무원의 경우 우주기상 환경 시뮬레이션을 이용하여 계산된 피폭선량으로 방사선 안전관리를 적용받고 있다. 하지만, 태양활동이나 고도, 비행경로 등에 따라 피폭선량이 가변적이어서 계산법보다는 항로별 측정하는 것이 권고되고 있다. 본 연구에서는 범용 Si 센서와 다중채널파고분석기를 이용하여 우주방사선 선량을 측정할 수 있는 선량계를 개발하였다. 선량계산은 미우주항공국의 우주방사선 측정장비인 CRaTER(Cosmic Ray Telescope for the Effects of Radiation)의 알고리즘을 적용하였다. 표준교정시설에서 Cs-137 662 keV 감마선으로 에너지 및 선량교정을 시행하였으며, 실험 범위에서 선량률 의존성이 없음을 확인하였다. 제작된 선량계를 이용하여 2023년 5월 두바이 인천 구간의 국제선에서 직접 선량을 측정한 결과 국내 우주방사선 선량평가코드(KREAM; Korean Radiation Exposure Assessment Model for Aviation Route Dose)로 계산된 결과와 12% 이내로 비슷하게 나타났으며, 고도와 위도가 높아짐에 따라 계산 결과와 동일하게 선량이 증가하는 것을 확인하였다. 좀 더 많은 실증적 검증 실험이 요구되는 제한점은 있지만, 항공기 내 또는 개인 피폭선량 모니터링에 가성비가 우수한 선량계로 충분한 활용 가능성을 확인하였다.

Influence of the Galactic Magnetic Field on the Distribution of Ultra-high-Energy Cosmic Rays

  • Kim, Jihyun;Kim, Hang Bae;Ryu, Dongsu
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.38.3-38.3
    • /
    • 2015
  • Recently, the Pierre Auger Observatory (PAO), the largest ground-based project for detecting ultra-high-energy cosmic rays (UHECRs), published their 10-year data. We can access an unprecedented number of UHECR data observed by the project, which give us a possibility to get an accurate statistical test result. In this work, we investigate the influence of the galactic magnetic field (GMF) on the distribution of UHECRs by searching the correlation with the large-scale structure (LSS) of the universe. We simulate the mock UHECR events whose trajectories from the sources would be deflected by the Gaussian smearing angle which reflects the influence by the GMF. By the statistical test, we compare the correlation between the expected/observed distribution of UHECRs and the LSS of the universe in the regions of sky divided by the galactic latitude, varying the smearing angle. Here, we assume the deflections by the GMF are mainly dependent on the galactic latitude. Using the maximum likelihood estimation, we find the best-fit smearing angle in each region. If we get a trend that best-fit smearing angles differ from each region, the influence of GMF may be stronger than that of intergalactic magnetic fields (IGMF) because it is known that the distribution of IGMF follows the LSS of the universe. Also, we can estimate the strength of the GMF using the best-fit parameter by the maximum likelihood.

  • PDF

비행고도 상에서의 우주방사선 관측 및 모델 비교 (Radiation Dose Measurement and Model Comparison at the Flight Level)

  • 이원형;김지영;장근일
    • 한국항공운항학회지
    • /
    • 제26권2호
    • /
    • pp.91-97
    • /
    • 2018
  • High-energy charged particles are comprised of galactic cosmic rays and solar energetic particles which are mainly originated from the supernova explosion, active galactic nuclei, and the Sun. These primary charged particles which have sufficient energy to penetrate the Earth's magnetic field collide with the Earth's upper atmosphere, that is $N_2$ and $O_2$, and create secondary particles and ionizing radiation. The ionizing radiation can be measured at commercial flight altitude. So it is recommended to manage radiation dose of aircrew as workers under radiation environment to protect their health and safety. However, it is hard to deploy radiation measurement instrument to commercial aircrafts and monitor radiation dose continuously. So the numerical model calculation is performed to assess radiation exposure at flight altitude. In this paper, we present comparison result between measurement data recorded on several flights and estimation data calculated using model and examine the characteristics of the radiation environment in the atmosphere.

Installation of Neutron Monitor at the Jang Bogo Station in Antarctica

  • Jung, Jongil;Oh, Suyeon;Yi, Yu;Evenson, Paul;Pyle, Roger;Jee, Geonhwa;Kim, Jeong-Han;Lee, Changsup;Sohn, Jongdae
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권4호
    • /
    • pp.345-348
    • /
    • 2016
  • In December 2015, we have installed neutron monitor at the Jang Bogo station in Antarctica. The Jang Bogo station is the second science station which is located at the coast ($74^{\circ}\;37.4^{\prime}S$, $164^{\circ}\;13.7^{\prime}E$) of Terra Nova Bay in Northern Victoria Land of Antarctica. A neutron monitor is an instrument to detect neutrons from secondary cosmic rays collided by the atmosphere. The installation of neutron monitor at Jang Bogo station is a part of transferred mission for neutron monitor at McMurdo station of USA. Among 18 tubes of 18-NM64 neutron monitor, we have completed relocation of 6 tubes and the rest will be transferred in December 2017. Currently, comparison of data from both neutron monitors is under way and there is a good agreement between the data. The neutron monitor at Jang Bogo station will be quite useful to study the space weather when the installation is completed.