• 제목/요약/키워드: Cosine similarity

검색결과 189건 처리시간 0.023초

MediaPipe를 활용한 춤동작 피드백 시각화 시스템 (Visualization System for Dance Movement Feedback using MediaPipe)

  • 김현서;정재영;최봉준;문미경
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.217-224
    • /
    • 2024
  • K-POP의 가파른 성장세에 따라 댄스 콘텐츠 산업이 확산되는 추세이다. 최근 SNS의 보급이 증가하면서 자신의 댄스 영상을 촬영하고 공유하기도 한다. 그러나 춤을 처음 접하는 댄스 초보자들은 동영상을 보며 혼자서 춤을 출 때, 객관적인 피드백을 받기 어려워 춤동작을 습득하기 쉽지 않다. 본 논문에서는 MediaPipe를 활용하여 안무 영상과 사용자의 춤 영상을 비교하고 올바르게 동작을 따라 하고 있는지 검출해 주는 시스템에 대해 기술한다. 본 연구에서는 웹캠이나 카메라로 촬영한 사용자 영상과 안무 영상 간의 춤동작 유사도를 코사인 유사도와 COCO OKS를 활용해 계산하여 사용자에게 색상 지표(Color Map)를 기반으로 한 피드백을 주는 방식을 제안한다. 본 시스템을 통해 사용자의 춤동작에 대한 객관적인 피드백을 시각적으로 받을 수 있으며 초보자들도 정확한 춤동작을 습득할 수 있을 것으로 기대한다.

하지 근육 시너지 분석 기반의 FES 시스템이 보행 시 뇌졸중 환자의 족하수 개선에 미치는 영향: 사례 연구 (The effect of lower limb muscle synergy analysis-based FES system on improvement of the foot drop of stroke patient during walking: a case study)

  • 임태현
    • 한국산업융합학회 논문집
    • /
    • 제23권3호
    • /
    • pp.523-529
    • /
    • 2020
  • Foot drop is a common symptom in stroke patients due to central nervous system (CNS) damage, which causes walking disturbances. Functional electrical stimulation (FES) is an effective rehabilitation method for stroke patients with CNS damage. Aim of this study was to determine the effectiveness of 6 weeks FES walking training based lower limb muscle synergy of stroke patients. Lower limb muscle synergies were extracted from electromyography (EMG) using a non-negative matrix factorization algorithm (NMF) method. Cosine similarity and cross correlation were calculated for similarity comparison with healthy subjects. In both stroke patients, the similarity of leg muscle synergy during walking changed to similar to that of healthy subjects due to a decrease in foot drop during. FES walking intervention influenced the similarity of muscle synergies during walking of stroke patients. This intervention has an effective method on foot drop and improving the gait performance of stroke patients.

기회적 네트워크에서의 유사도 기반의 포워딩 기법의 성능 분석 (Performance Analysis of Forwarding Schemes Based on Similarities for Opportunistic Networks)

  • 김선겸;이태석;김완종
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제24권3호
    • /
    • pp.145-150
    • /
    • 2018
  • 기회적 네트워크(Opportunistic networks)의 포워딩은 간헐적인 연결로 인하여 출발지와 목적지 간에 안정된 경로가 존재하지 않아 기존 포워딩 기법들은 성능이 저하되는 문제를 가지고 있다. 최근 소셜 네트워크 관계망을 이용한 연구가 활발히 진행되고 있으며, 유사도(Similarity)는 소셜 네트워크 분석을 위한 매우 중요한 분석 방법 중 하나이다. 본 논문은 대표적인 유사도를 이용한 포워딩 기법들을 제안하고 기회적 네트워크에서 유사도에 기반한 포워딩 기법을 적용시에 얼마나 성능 향상이 있는지 알아본다. 그 결과로, 이 기법들은 목적지와 유사도가 높은 노드를 중개 노드로 선정하여 포워딩하기 때문에 낮은 트래픽 및 홉 수를 가지게 되며, 준수한 전송 딜레이를 유지한다.

사람과 강화학습 인공지능의 게임플레이 유사도 측정 (Measuring gameplay similarity between human and reinforcement learning artificial intelligence)

  • 허민구;박창훈
    • 한국게임학회 논문지
    • /
    • 제20권6호
    • /
    • pp.63-74
    • /
    • 2020
  • 최근, 사람 대신 인공지능 에이전트를 이용하여 게임 테스트를 자동화하는 연구가 관심을 모으고 있다. 본 논문은 게임 밸런싱 자동화를 위한 선행 연구로써 사람과 인공지능으로부터 플레이 데이터를 수집하고 이들의 유사도를 분석하고자 한다. 이때, 사람과 유사한 플레이를 할 수 있는 인공지능의 생성을 위해 학습 단계에서 제약사항을 추가하였다. 플레이 데이터는 14명의 사람과 60개의 인공지능을 대상으로 플리피버드 게임을 각각 10회 실시하여 획득하였다. 수집한 데이터는 코사인 유사도 방법으로 이동 궤적, 액션 위치, 죽은 위치를 비교 분석하였다. 분석 결과 사람과의 유사도가 0.9 이상인 인공지능 에이전트를 찾을 수 있었다.

Fingerprint Matching Based on Dimension Reduced DCT Feature Vectors

  • Bharkad, Sangita;Kokare, Manesh
    • Journal of Information Processing Systems
    • /
    • 제13권4호
    • /
    • pp.852-862
    • /
    • 2017
  • In this work a Discrete Cosine Transform (DCT)-based feature dimensionality reduced approach for fingerprint matching is proposed. The DCT is applied on a small region around the core point of fingerprint image. The performance of our proposed method is evaluated on a small database of Bologna University and two large databases of FVC2000. A dimensionally reduced feature vector is formed using only approximately 19%, 7%, and 6% DCT coefficients for the three databases from Bologna University and FVC2000, respectively. We compared the results of our proposed method with the discrete wavelet transform (DWT) method, the rotated wavelet filters (RWFs) method, and a combination of DWT+RWF and DWT+(HL+LH) subbands of RWF. The proposed method reduces the false acceptance rate from approximately 18% to 4% on DB1 (Database of Bologna University), approximately 29% to 16% on DB2 (FVC2000), and approximately 26% to 17% on DB3 (FVC2000) over the DWT based feature extraction method.

오픈소스 소프트웨어 라이선스 파일 식별 기술 (Measurement for License Identification of Open Source Software)

  • 윤호영;조용준;정병옥;신동명
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제12권2호
    • /
    • pp.1-8
    • /
    • 2016
  • 본 논문은 오픈소스 소프트웨어의 배포과정에서 라이선스 정보가 누락, 훼손, 변경, 충돌됨에 따라 발생하는 무의적인 저작권 침해를 미연에 방지하고자 라이선스 파일을 추출/식별하는 기술을 연구하였다. 라이선스 파일이 갖는 특성을 파악하기 위해 n-gram과 TF-IDF 기법을 활용하여 322개의 라이선스 내용을 분석하였고, 이를 활용하여 패키지 내에서 라이선스 파일을 추출하였다. 추출한 라이선스는 코사인 측정법을 통해 확보한 라이선스간의 유사도를 산정하여 라이선스 정보를 식별하였다.

R&D과제의 기술분류를 이용한 사업간 유사도 분석 기법에 관한 연구 (A study on Similarity analysis of National R&D Programs using R&D Project's technical classification)

  • 김주호;김영자;김종배
    • 디지털콘텐츠학회 논문지
    • /
    • 제13권3호
    • /
    • pp.317-324
    • /
    • 2012
  • 최근 R&D 투자효율성 제고를 목표로 사업 간의 유사중복 조정에 대한 중요성이 강조되고 있으나, 과제 혹은 예산요구서 내용 등을 텍스트 기반으로 비교하는 기존 유사검색 방식은 내용의 품질 편차 등으로 인해 유의미한 유사성 도출에 제한점이 있다. 이러한 텍스트 기반의 키워드 추출을 통한 유사검색 한계성을 극복하기 위한 방안으로 본 연구에서는 사업 간 유사도 분석 시 과제의 기술분류를 활용한다. 국가R&D사업 조사 분석 시 수집된 과제들의 과학기술표준분류를 추출하여 사업별 고유벡터 모형을 생성 후 이를 이용하여 코사인 기반, 유클리디안 거리기반 알고리즘을 통해 각 사업 간 유사도를 측정하였으며 기존 키워드 추출방식으로 유사도를 측정한 결과와의 비교를 통해 연구 효율성을 검증하였다.

협력필터링의 데이터 희소성 해결을 위한 자카드 지수 반영의 유사도 성능 분석 (Performance Analysis of Similarity Reflecting Jaccard Index for Solving Data Sparsity in Collaborative Filtering)

  • 이수정
    • 컴퓨터교육학회논문지
    • /
    • 제19권4호
    • /
    • pp.59-66
    • /
    • 2016
  • 협력 필터링 시스템에서 데이터 희소성 문제의 해결을 위해 공통평가항목수를 반영하는 방법이 연구되었다. 이러한 방법으로 널리 알려진 자카드 지수는 기존의 유사도 척도와 결합되어 성능을 개선할 수 있었다. 그러나, 다양한 데이터 환경에서 여러 유사도 척도들과 각각 결합했을 때의 성능 개선 효과에 대한 분석 연구는 미미하므로, 본 연구는 이에 대한 분석을 목적으로 한다. 우선 자카드 지수 자체를 유사도 척도로 사용했을때 희소한 데이터셋 상에서 전통적인 척도들보다 월등한 예측 성능을 보였고 추천 성능도 매우 우수하였다. 자카드 지수를 결합함으로써 기존 유사도 척도는 데이터 특성에 상관없이 성능이 대개 향상되었고, 특히 코사인 유사도는 희소한 데이터셋에서 가장 큰 향상을 이루었으나, 평균차이 제곱(Mean Squared Difference)의 유사도는 밀집된 데이터셋에서 오히려 저하된 예측 성능을 보였다. 따라서, 자카드 지수를 결합하여 사용하기 위해 데이터 환경 특성과 유사도 척도를 고려할 필요가 있다.

AI-Based Project Similarity Evaluation Model Using Project Scope Statements

  • Ko, Taewoo;Jeong, H. David;Lee, JeeHee
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.284-291
    • /
    • 2022
  • Historical data from comparable projects can serve as benchmarking data for an ongoing project's planning during the project scoping phase. As project owners typically store substantial amounts of data generated throughout project life cycles in digitized databases, they can capture appropriate data to support various project planning activities by accessing digital databases. One of the most important work tasks in this process is identifying one or more past projects comparable to a new project. The uniqueness and complexity of construction projects along with unorganized data, impede the reliable identification of comparable past projects. A project scope document provides the preliminary overview of a project in terms of the extent of the project and project requirements. However, narratives and free-formatted descriptions of project scopes are a significant and time-consuming barrier if a human needs to review them and determine similar projects. This study proposes an Artificial Intelligence-driven model for analyzing project scope descriptions and evaluating project similarity using natural language processing (NLP) techniques. The proposed algorithm can intelligently a) extract major work activities from unstructured descriptions held in a database and b) quantify similarities by considering the semantic features of texts representing work activities. The proposed model enhances historical comparable project identification by systematically analyzing project scopes.

  • PDF

An Improved K-means Document Clustering using Concept Vectors

  • Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권4호
    • /
    • pp.853-861
    • /
    • 2003
  • An improved K-means document clustering method has been presented, where a concept vector is manipulated for each cluster on the basis of cosine similarity of text documents. The concept vectors are unit vectors that have been normalized on the n-dimensional sphere. Because the standard K-means method is sensitive to initial starting condition, our improvement focused on starting condition for estimating the modes of a distribution. The improved K-means clustering algorithm has been applied to a set of text documents, called Classic3, to test and prove efficiency and correctness of clustering result, and showed 7% improvements in its worst case.

  • PDF