K-POP의 가파른 성장세에 따라 댄스 콘텐츠 산업이 확산되는 추세이다. 최근 SNS의 보급이 증가하면서 자신의 댄스 영상을 촬영하고 공유하기도 한다. 그러나 춤을 처음 접하는 댄스 초보자들은 동영상을 보며 혼자서 춤을 출 때, 객관적인 피드백을 받기 어려워 춤동작을 습득하기 쉽지 않다. 본 논문에서는 MediaPipe를 활용하여 안무 영상과 사용자의 춤 영상을 비교하고 올바르게 동작을 따라 하고 있는지 검출해 주는 시스템에 대해 기술한다. 본 연구에서는 웹캠이나 카메라로 촬영한 사용자 영상과 안무 영상 간의 춤동작 유사도를 코사인 유사도와 COCO OKS를 활용해 계산하여 사용자에게 색상 지표(Color Map)를 기반으로 한 피드백을 주는 방식을 제안한다. 본 시스템을 통해 사용자의 춤동작에 대한 객관적인 피드백을 시각적으로 받을 수 있으며 초보자들도 정확한 춤동작을 습득할 수 있을 것으로 기대한다.
Foot drop is a common symptom in stroke patients due to central nervous system (CNS) damage, which causes walking disturbances. Functional electrical stimulation (FES) is an effective rehabilitation method for stroke patients with CNS damage. Aim of this study was to determine the effectiveness of 6 weeks FES walking training based lower limb muscle synergy of stroke patients. Lower limb muscle synergies were extracted from electromyography (EMG) using a non-negative matrix factorization algorithm (NMF) method. Cosine similarity and cross correlation were calculated for similarity comparison with healthy subjects. In both stroke patients, the similarity of leg muscle synergy during walking changed to similar to that of healthy subjects due to a decrease in foot drop during. FES walking intervention influenced the similarity of muscle synergies during walking of stroke patients. This intervention has an effective method on foot drop and improving the gait performance of stroke patients.
기회적 네트워크(Opportunistic networks)의 포워딩은 간헐적인 연결로 인하여 출발지와 목적지 간에 안정된 경로가 존재하지 않아 기존 포워딩 기법들은 성능이 저하되는 문제를 가지고 있다. 최근 소셜 네트워크 관계망을 이용한 연구가 활발히 진행되고 있으며, 유사도(Similarity)는 소셜 네트워크 분석을 위한 매우 중요한 분석 방법 중 하나이다. 본 논문은 대표적인 유사도를 이용한 포워딩 기법들을 제안하고 기회적 네트워크에서 유사도에 기반한 포워딩 기법을 적용시에 얼마나 성능 향상이 있는지 알아본다. 그 결과로, 이 기법들은 목적지와 유사도가 높은 노드를 중개 노드로 선정하여 포워딩하기 때문에 낮은 트래픽 및 홉 수를 가지게 되며, 준수한 전송 딜레이를 유지한다.
최근, 사람 대신 인공지능 에이전트를 이용하여 게임 테스트를 자동화하는 연구가 관심을 모으고 있다. 본 논문은 게임 밸런싱 자동화를 위한 선행 연구로써 사람과 인공지능으로부터 플레이 데이터를 수집하고 이들의 유사도를 분석하고자 한다. 이때, 사람과 유사한 플레이를 할 수 있는 인공지능의 생성을 위해 학습 단계에서 제약사항을 추가하였다. 플레이 데이터는 14명의 사람과 60개의 인공지능을 대상으로 플리피버드 게임을 각각 10회 실시하여 획득하였다. 수집한 데이터는 코사인 유사도 방법으로 이동 궤적, 액션 위치, 죽은 위치를 비교 분석하였다. 분석 결과 사람과의 유사도가 0.9 이상인 인공지능 에이전트를 찾을 수 있었다.
In this work a Discrete Cosine Transform (DCT)-based feature dimensionality reduced approach for fingerprint matching is proposed. The DCT is applied on a small region around the core point of fingerprint image. The performance of our proposed method is evaluated on a small database of Bologna University and two large databases of FVC2000. A dimensionally reduced feature vector is formed using only approximately 19%, 7%, and 6% DCT coefficients for the three databases from Bologna University and FVC2000, respectively. We compared the results of our proposed method with the discrete wavelet transform (DWT) method, the rotated wavelet filters (RWFs) method, and a combination of DWT+RWF and DWT+(HL+LH) subbands of RWF. The proposed method reduces the false acceptance rate from approximately 18% to 4% on DB1 (Database of Bologna University), approximately 29% to 16% on DB2 (FVC2000), and approximately 26% to 17% on DB3 (FVC2000) over the DWT based feature extraction method.
본 논문은 오픈소스 소프트웨어의 배포과정에서 라이선스 정보가 누락, 훼손, 변경, 충돌됨에 따라 발생하는 무의적인 저작권 침해를 미연에 방지하고자 라이선스 파일을 추출/식별하는 기술을 연구하였다. 라이선스 파일이 갖는 특성을 파악하기 위해 n-gram과 TF-IDF 기법을 활용하여 322개의 라이선스 내용을 분석하였고, 이를 활용하여 패키지 내에서 라이선스 파일을 추출하였다. 추출한 라이선스는 코사인 측정법을 통해 확보한 라이선스간의 유사도를 산정하여 라이선스 정보를 식별하였다.
최근 R&D 투자효율성 제고를 목표로 사업 간의 유사중복 조정에 대한 중요성이 강조되고 있으나, 과제 혹은 예산요구서 내용 등을 텍스트 기반으로 비교하는 기존 유사검색 방식은 내용의 품질 편차 등으로 인해 유의미한 유사성 도출에 제한점이 있다. 이러한 텍스트 기반의 키워드 추출을 통한 유사검색 한계성을 극복하기 위한 방안으로 본 연구에서는 사업 간 유사도 분석 시 과제의 기술분류를 활용한다. 국가R&D사업 조사 분석 시 수집된 과제들의 과학기술표준분류를 추출하여 사업별 고유벡터 모형을 생성 후 이를 이용하여 코사인 기반, 유클리디안 거리기반 알고리즘을 통해 각 사업 간 유사도를 측정하였으며 기존 키워드 추출방식으로 유사도를 측정한 결과와의 비교를 통해 연구 효율성을 검증하였다.
협력 필터링 시스템에서 데이터 희소성 문제의 해결을 위해 공통평가항목수를 반영하는 방법이 연구되었다. 이러한 방법으로 널리 알려진 자카드 지수는 기존의 유사도 척도와 결합되어 성능을 개선할 수 있었다. 그러나, 다양한 데이터 환경에서 여러 유사도 척도들과 각각 결합했을 때의 성능 개선 효과에 대한 분석 연구는 미미하므로, 본 연구는 이에 대한 분석을 목적으로 한다. 우선 자카드 지수 자체를 유사도 척도로 사용했을때 희소한 데이터셋 상에서 전통적인 척도들보다 월등한 예측 성능을 보였고 추천 성능도 매우 우수하였다. 자카드 지수를 결합함으로써 기존 유사도 척도는 데이터 특성에 상관없이 성능이 대개 향상되었고, 특히 코사인 유사도는 희소한 데이터셋에서 가장 큰 향상을 이루었으나, 평균차이 제곱(Mean Squared Difference)의 유사도는 밀집된 데이터셋에서 오히려 저하된 예측 성능을 보였다. 따라서, 자카드 지수를 결합하여 사용하기 위해 데이터 환경 특성과 유사도 척도를 고려할 필요가 있다.
The 9th International Conference on Construction Engineering and Project Management
/
pp.284-291
/
2022
Historical data from comparable projects can serve as benchmarking data for an ongoing project's planning during the project scoping phase. As project owners typically store substantial amounts of data generated throughout project life cycles in digitized databases, they can capture appropriate data to support various project planning activities by accessing digital databases. One of the most important work tasks in this process is identifying one or more past projects comparable to a new project. The uniqueness and complexity of construction projects along with unorganized data, impede the reliable identification of comparable past projects. A project scope document provides the preliminary overview of a project in terms of the extent of the project and project requirements. However, narratives and free-formatted descriptions of project scopes are a significant and time-consuming barrier if a human needs to review them and determine similar projects. This study proposes an Artificial Intelligence-driven model for analyzing project scope descriptions and evaluating project similarity using natural language processing (NLP) techniques. The proposed algorithm can intelligently a) extract major work activities from unstructured descriptions held in a database and b) quantify similarities by considering the semantic features of texts representing work activities. The proposed model enhances historical comparable project identification by systematically analyzing project scopes.
Journal of the Korean Data and Information Science Society
/
제14권4호
/
pp.853-861
/
2003
An improved K-means document clustering method has been presented, where a concept vector is manipulated for each cluster on the basis of cosine similarity of text documents. The concept vectors are unit vectors that have been normalized on the n-dimensional sphere. Because the standard K-means method is sensitive to initial starting condition, our improvement focused on starting condition for estimating the modes of a distribution. The improved K-means clustering algorithm has been applied to a set of text documents, called Classic3, to test and prove efficiency and correctness of clustering result, and showed 7% improvements in its worst case.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.