• 제목/요약/키워드: Cosine similarity

Search Result 189, Processing Time 0.025 seconds

A Study on Detecting Changes in Injection Molding Process through Similarity Analysis of Mold Vibration Signal Patterns (금형 기반 진동 신호 패턴의 유사도 분석을 통한 사출성형공정 변화 감지에 대한 연구)

  • Jong-Sun Kim
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.34-40
    • /
    • 2023
  • In this study, real-time collection of mold vibration signals during injection molding processes was achieved through IoT devices installed on the mold surface. To analyze changes in the collected vibration signals, injection molding was performed under six different process conditions. Analysis of the mold vibration signals according to process conditions revealed distinct trends and patterns. Based on this result, cosine similarity was applied to compare pattern changes in the mold vibration signals. The similarity in time and acceleration vector space between the collected data was analyzed. The results showed that under identical conditions for all six process settings, the cosine similarity remained around 0.92±0.07. However, when different process conditions were applied, the cosine similarity decreased to the range of 0.47±0.07. Based on these results, a cosine similarity threshold of 0.60~0.70 was established. When applied to the analysis of mold vibration signals, it was possible to determine whether the molding process was stable or whether variations had occurred due to changes in process conditions. This establishes the potential use of cosine similarity based on mold vibration signals in future applications for real-time monitoring of molding process changes and anomaly detection.

Development of the Recommender System of Arabic Books Based on the Content Similarity

  • Alotaibi, Shaykhah Hajed;Khan, Muhammad Badruddin
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.175-186
    • /
    • 2022
  • This research article develops an Arabic books' recommendation system, which is based on the content similarity that assists users to search for the right book and predict the appropriate and suitable books pertaining to their literary style. In fact, the system directs its users toward books, which can meet their needs from a large dataset of Information. Further, this system makes its predictions based on a set of data that is gathered from different books and converts it to vectors by using the TF-IDF system. After that, the recommendation algorithms such as the cosine similarity, the sequence matcher similarity, and the semantic similarity aggregate data to produce an efficient and effective recommendation. This approach is advantageous in recommending previously unrated books to users with unique interests. It is found to be proven from the obtained results that the results of the cosine similarity of the full content of books, the results of the sequence matcher similarity of Arabic titles of the books, and the results of the semantic similarity of English titles of the books are the best obtained results, and extremely close to the average of the result related to the human assigned/annotated similarity. Flask web application is developed with a simple interface to show the recommended Arabic books by using cosine similarity, sequence matcher similarity, and semantic similarity algorithms with all experiments that are conducted.

Sentence Similarity Analysis using Ontology Based on Cosine Similarity (코사인 유사도를 기반의 온톨로지를 이용한 문장유사도 분석)

  • Hwang, Chi-gon;Yoon, Chang-Pyo;Yun, Dai Yeol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.441-443
    • /
    • 2021
  • Sentence or text similarity is a measure of the degree of similarity between two sentences. Techniques for measuring text similarity include Jacquard similarity, cosine similarity, Euclidean similarity, and Manhattan similarity. Currently, the cosine similarity technique is most often used, but since this is an analysis according to the occurrence or frequency of a word in a sentence, the analysis on the semantic relationship is insufficient. Therefore, we try to improve the efficiency of analysis on the similarity of sentences by giving relations between words using ontology and including semantic similarity when extracting words that are commonly included in two sentences.

  • PDF

Assessment of performance of machine learning based similarities calculated for different English translations of Holy Quran

  • Al Ghamdi, Norah Mohammad;Khan, Muhammad Badruddin
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.111-118
    • /
    • 2022
  • This research article presents the work that is related to the application of different machine learning based similarity techniques on religious text for identifying similarities and differences among its various translations. The dataset includes 10 different English translations of verses (Arabic: Ayah) of two Surahs (chapters) namely, Al-Humazah and An-Nasr. The quantitative similarity values for different translations for the same verse were calculated by using the cosine similarity and semantic similarity. The corpus went through two series of experiments: before pre-processing and after pre-processing. In order to determine the performance of machine learning based similarities, human annotated similarities between translations of two Surahs (chapters) namely Al-Humazah and An-Nasr were recorded to construct the ground truth. The average difference between the human annotated similarity and the cosine similarity for Surah (chapter) Al-Humazah was found to be 1.38 per verse (ayah) per pair of translation. After pre-processing, the average difference increased to 2.24. Moreover, the average difference between human annotated similarity and semantic similarity for Surah (chapter) Al-Humazah was found to be 0.09 per verse (Ayah) per pair of translation. After pre-processing, it increased to 0.78. For the Surah (chapter) An-Nasr, before preprocessing, the average difference between human annotated similarity and cosine similarity was found to be 1.93 per verse (Ayah), per pair of translation. And. After pre-processing, the average difference further increased to 2.47. The average difference between the human annotated similarity and the semantic similarity for Surah An-Nasr before preprocessing was found to be 0.93 and after pre-processing, it was reduced to 0.87 per verse (ayah) per pair of translation. The results showed that as expected, the semantic similarity was proven to be better measurement indicator for calculation of the word meaning.

A Behavior-based Authentication Using the Measuring Cosine Similarity (코사인 유사도 측정을 통한 행위 기반 인증)

  • Gil, Seon-Woong;Lee, Ki-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.17-22
    • /
    • 2020
  • Behavior-based authentication technology, which is currently being researched a lot, requires a long extraction of a lot of data to increase the recognition rate of authentication compared to other authentication technologies. This paper uses the touch sensor and the gyroscope embedded in the smartphone in the Android environment to measure five times to the user to use only the minimum data that is essential among the behavior feature data used in the behavior-based authentication study. By requesting, a total of six behavior feature data were collected by touching the five touch screen, and the mean value was calculated from the changes in data during the next touch measurement to measure the cosine similarity between the value and the measured value. After generating the allowable range of cosine similarity by performing, we propose a user behavior based authentication method that compares the cosine similarity value of the authentication attempt data. Through this paper, we succeeded in demonstrating high performance from the first EER of 37.6% to the final EER of 1.9% by adjusting the threshold applied to the cosine similarity authentication range even in a small number of feature data and experimenter environments.

An Extended Work Architecture for Online Threat Prediction in Tweeter Dataset

  • Sheoran, Savita Kumari;Yadav, Partibha
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.97-106
    • /
    • 2021
  • Social networking platforms have become a smart way for people to interact and meet on internet. It provides a way to keep in touch with friends, families, colleagues, business partners, and many more. Among the various social networking sites, Twitter is one of the fastest-growing sites where users can read the news, share ideas, discuss issues etc. Due to its vast popularity, the accounts of legitimate users are vulnerable to the large number of threats. Spam and Malware are some of the most affecting threats found on Twitter. Therefore, in order to enjoy seamless services it is required to secure Twitter against malicious users by fixing them in advance. Various researches have used many Machine Learning (ML) based approaches to detect spammers on Twitter. This research aims to devise a secure system based on Hybrid Similarity Cosine and Soft Cosine measured in combination with Genetic Algorithm (GA) and Artificial Neural Network (ANN) to secure Twitter network against spammers. The similarity among tweets is determined using Cosine with Soft Cosine which has been applied on the Twitter dataset. GA has been utilized to enhance training with minimum training error by selecting the best suitable features according to the designed fitness function. The tweets have been classified as spammer and non-spammer based on ANN structure along with the voting rule. The True Positive Rate (TPR), False Positive Rate (FPR) and Classification Accuracy are considered as the evaluation parameter to evaluate the performance of system designed in this research. The simulation results reveals that our proposed model outperform the existing state-of-arts.

Target Classification in Sparse Sampling Acoustic Sensor Networks using DTW-Cosine Algorithm (저비율 샘플링 음향 센서네트워크에서 DTW-Cosine 알고리즘을 이용한 목표물 식별기법)

  • Kim, Young-Soo;Kang, Jong-Gu;Kim, Dae-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.2
    • /
    • pp.221-225
    • /
    • 2008
  • In this paper, to avoid the frequency analysis requiring a high sampling rate, time-warped similarity measure algorithms, which are able to classify objects even with a low-rate sampling rate as time- series methods, are presented and proposed the DTW-Cosine algorithm, as the best classifier among them in wireless sensor networks. Two problems, local time shifting and spatial signal variation, should be solved to apply the time-warped similarity measure algorithms to wireless sensor networks. We find that our proposed algorithm can overcome those problems very efficiently and outperforms the other algorithms by at least 10.3% accuracy.

Quantitative Measure of the Changes of Migration Patterns Using Cosine Similarity (코사인 유사도를 이용한 이주패턴 변화의 정량적 측정)

  • Han, Yicheol
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • Migration is defined as the movement of people between residential places, and represents interactions between regions. Changes in migration involve changes in both the number of migrants toward/from regions and migration patterns across regions. However, most migration studies have focused only on the change in migrants, while no empirical study captures changes in migration patterns. In this paper, I present a function using the cosine similarity to measure changes in migration patterns, and apply it to 2001-2016 migration data of Korea. The results show that the migration patterns of Korea shifted in 2007, resulting in two distinct clusters. Local areas experienced various migration pattern changes despite few changes in the number of migrants.

Personalized Recommendation System using Level of Cosine Similarity of Emotion Word from Social Network (소셜 네트워크에서 감정단어의 단계별 코사인 유사도 기법을 이용한 추천시스템)

  • Kwon, Eungju;Kim, Jongwoo;Heo, Nojeong;Kang, Sanggil
    • Journal of Information Technology and Architecture
    • /
    • v.9 no.3
    • /
    • pp.333-344
    • /
    • 2012
  • This paper proposes a system which recommends movies using information from social network services containing personal interest and taste. Method for establishing data is as follows. The system gathers movies' information from web sites and user's information from social network services such as Facebook and twitter. The data from social network services is categorized into six steps of emotion level for more accurate processing following users' emotional states. Gathered data will be established into vector space model which is ideal for analyzing and deducing the information with the system which is suggested in this paper. The existing similarity measurement method for movie recommendation is presentation of vector information about emotion level and similarity measuring method on the coordinates using Cosine measure. The deducing method suggested in this paper is two-phase arithmetic operation as follows. First, using general cosine measurement, the system establishes movies list. Second, using similarity measurement, system decides recommendable movie list by vector operation from the coordinates. After Comparative Experimental Study on the previous recommendation systems and new one, it turned out the new system from this study is more helpful than existing systems.

The Analysis of the Conferences for the Computer Network Using the Miner and the Cosine Similarity based upon Keywords (키워드를 기반으로 마이너와 코사인 유사도를 이용한 컴퓨터 네트워크 관련 컨퍼런스 분석)

  • Kwon, Young-Bin;Lee, Seoung-Do;Yang, Hyun;Joo, Yo-Han
    • Journal of Information Technology Services
    • /
    • v.11 no.1
    • /
    • pp.223-238
    • /
    • 2012
  • We have been provided with a plenty of information about IT through the conferences. However, it is hard to find enough information or the latest trends from conferences because there are too many conferences. In this situation, we analyzed the latest trends related to the field of IT by exploiting the Netminer which is one of the software for analysis of social networks and measuring the Cosine Similarity between conferences, based upon keywords which are included in the conferences. We analyzed keywords of 24 conferences related to the computer network part of the IEEE (Institute of Electrical and Electronics Engineers) in the case of foreign conferences. We also analyze keywords of the KIISE (Korean Institute of Information Scientists and Engineers) conferences in the case of domestic conferences, during 2009-2010. We identified the trends through the frequency of keywords, the change of top 10 keywords ranking and the similarity between conferences.