• 제목/요약/키워드: Cosine similarity

검색결과 189건 처리시간 0.036초

금형 기반 진동 신호 패턴의 유사도 분석을 통한 사출성형공정 변화 감지에 대한 연구 (A Study on Detecting Changes in Injection Molding Process through Similarity Analysis of Mold Vibration Signal Patterns)

  • 김종선
    • Design & Manufacturing
    • /
    • 제17권3호
    • /
    • pp.34-40
    • /
    • 2023
  • In this study, real-time collection of mold vibration signals during injection molding processes was achieved through IoT devices installed on the mold surface. To analyze changes in the collected vibration signals, injection molding was performed under six different process conditions. Analysis of the mold vibration signals according to process conditions revealed distinct trends and patterns. Based on this result, cosine similarity was applied to compare pattern changes in the mold vibration signals. The similarity in time and acceleration vector space between the collected data was analyzed. The results showed that under identical conditions for all six process settings, the cosine similarity remained around 0.92±0.07. However, when different process conditions were applied, the cosine similarity decreased to the range of 0.47±0.07. Based on these results, a cosine similarity threshold of 0.60~0.70 was established. When applied to the analysis of mold vibration signals, it was possible to determine whether the molding process was stable or whether variations had occurred due to changes in process conditions. This establishes the potential use of cosine similarity based on mold vibration signals in future applications for real-time monitoring of molding process changes and anomaly detection.

Development of the Recommender System of Arabic Books Based on the Content Similarity

  • Alotaibi, Shaykhah Hajed;Khan, Muhammad Badruddin
    • International Journal of Computer Science & Network Security
    • /
    • 제22권8호
    • /
    • pp.175-186
    • /
    • 2022
  • This research article develops an Arabic books' recommendation system, which is based on the content similarity that assists users to search for the right book and predict the appropriate and suitable books pertaining to their literary style. In fact, the system directs its users toward books, which can meet their needs from a large dataset of Information. Further, this system makes its predictions based on a set of data that is gathered from different books and converts it to vectors by using the TF-IDF system. After that, the recommendation algorithms such as the cosine similarity, the sequence matcher similarity, and the semantic similarity aggregate data to produce an efficient and effective recommendation. This approach is advantageous in recommending previously unrated books to users with unique interests. It is found to be proven from the obtained results that the results of the cosine similarity of the full content of books, the results of the sequence matcher similarity of Arabic titles of the books, and the results of the semantic similarity of English titles of the books are the best obtained results, and extremely close to the average of the result related to the human assigned/annotated similarity. Flask web application is developed with a simple interface to show the recommended Arabic books by using cosine similarity, sequence matcher similarity, and semantic similarity algorithms with all experiments that are conducted.

코사인 유사도를 기반의 온톨로지를 이용한 문장유사도 분석 (Sentence Similarity Analysis using Ontology Based on Cosine Similarity)

  • 황치곤;윤창표;윤대열
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.441-443
    • /
    • 2021
  • 문장 또는 텍스트 유사도란 두 가지 문장의 유사한 정도를 나타내는 척도이다. 텍스트의 유사도를 측정하는 기법으로 자카드 유사도, 코사인 유사도, 유클리디언 유사도, 맨하탄 유사도 등과 같이 있다. 현재 코사인 유사도 기법을 가장 많이 사용하고 있으나 이는 문장에서 단어의 출현 여부와 빈도수에 따른 분석이기 때문에, 의미적 관계에 대한 분석이 부족하다. 이에 우리는 온톨로지를 이용하여 단어 간의 관계를 부여하고, 두 문장에서 공통으로 포함된 단어를 추출할 때 의미적 유사성을 포함함으로써 문장의 유사도에 분석의 효율을 향상하고자 한다.

  • PDF

Assessment of performance of machine learning based similarities calculated for different English translations of Holy Quran

  • Al Ghamdi, Norah Mohammad;Khan, Muhammad Badruddin
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.111-118
    • /
    • 2022
  • This research article presents the work that is related to the application of different machine learning based similarity techniques on religious text for identifying similarities and differences among its various translations. The dataset includes 10 different English translations of verses (Arabic: Ayah) of two Surahs (chapters) namely, Al-Humazah and An-Nasr. The quantitative similarity values for different translations for the same verse were calculated by using the cosine similarity and semantic similarity. The corpus went through two series of experiments: before pre-processing and after pre-processing. In order to determine the performance of machine learning based similarities, human annotated similarities between translations of two Surahs (chapters) namely Al-Humazah and An-Nasr were recorded to construct the ground truth. The average difference between the human annotated similarity and the cosine similarity for Surah (chapter) Al-Humazah was found to be 1.38 per verse (ayah) per pair of translation. After pre-processing, the average difference increased to 2.24. Moreover, the average difference between human annotated similarity and semantic similarity for Surah (chapter) Al-Humazah was found to be 0.09 per verse (Ayah) per pair of translation. After pre-processing, it increased to 0.78. For the Surah (chapter) An-Nasr, before preprocessing, the average difference between human annotated similarity and cosine similarity was found to be 1.93 per verse (Ayah), per pair of translation. And. After pre-processing, the average difference further increased to 2.47. The average difference between the human annotated similarity and the semantic similarity for Surah An-Nasr before preprocessing was found to be 0.93 and after pre-processing, it was reduced to 0.87 per verse (ayah) per pair of translation. The results showed that as expected, the semantic similarity was proven to be better measurement indicator for calculation of the word meaning.

코사인 유사도 측정을 통한 행위 기반 인증 (A Behavior-based Authentication Using the Measuring Cosine Similarity)

  • 길선웅;이기영
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권4호
    • /
    • pp.17-22
    • /
    • 2020
  • 현재 많은 연구가 진행되고 있는 행위 기반 인증 기술은 다른 인증 기술들에 비해서 인증의 인식률을 높이는데 많은 데이터의 장기간 추출이 필요하다. 본 논문은 안드로이드 환경의 스마트폰에 내재되어있는 터치 센서와 자이로스코프를 이용하여 그동안의 행위 기반 인증 연구에서 사용 되었던 행위 특징 데이터들 중에서 핵심적인 최소한의 데이터들만을 이용하기 위해 사용자에게 다섯 차례의 측정을 요구하여 다섯 번의 터치스크린 화면을 터치 하는 방식으로 총 6가지의 행위 특징 데이터를 수집하였고 다음 터치 측정으로 넘어가는 동안의 데이터들의 변화 값에 평균 값을 구하여 이 값과 측정값의 코사인 유사도 측정을 수행하여 코사인 유사도 허용 범위를 생성 한 후, 인증 시도 데이터의 코사인 유사도 값과 비교하는 방식의 사용자 행위 기반 인증 방식을 제안한다. 본 논문을 통해서 적은 수의 특징 데이터와 실험자수 환경에서도 코사인 유사도 인증 범위에 적용되는 임계값을 조절하는 방식을 통해서 최초 EER 37.6%에서 최종 EER 1.9%의 높은 성능을 증명하는데 성공하였다.

An Extended Work Architecture for Online Threat Prediction in Tweeter Dataset

  • Sheoran, Savita Kumari;Yadav, Partibha
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.97-106
    • /
    • 2021
  • Social networking platforms have become a smart way for people to interact and meet on internet. It provides a way to keep in touch with friends, families, colleagues, business partners, and many more. Among the various social networking sites, Twitter is one of the fastest-growing sites where users can read the news, share ideas, discuss issues etc. Due to its vast popularity, the accounts of legitimate users are vulnerable to the large number of threats. Spam and Malware are some of the most affecting threats found on Twitter. Therefore, in order to enjoy seamless services it is required to secure Twitter against malicious users by fixing them in advance. Various researches have used many Machine Learning (ML) based approaches to detect spammers on Twitter. This research aims to devise a secure system based on Hybrid Similarity Cosine and Soft Cosine measured in combination with Genetic Algorithm (GA) and Artificial Neural Network (ANN) to secure Twitter network against spammers. The similarity among tweets is determined using Cosine with Soft Cosine which has been applied on the Twitter dataset. GA has been utilized to enhance training with minimum training error by selecting the best suitable features according to the designed fitness function. The tweets have been classified as spammer and non-spammer based on ANN structure along with the voting rule. The True Positive Rate (TPR), False Positive Rate (FPR) and Classification Accuracy are considered as the evaluation parameter to evaluate the performance of system designed in this research. The simulation results reveals that our proposed model outperform the existing state-of-arts.

저비율 샘플링 음향 센서네트워크에서 DTW-Cosine 알고리즘을 이용한 목표물 식별기법 (Target Classification in Sparse Sampling Acoustic Sensor Networks using DTW-Cosine Algorithm)

  • 김영수;강종구;김대영
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권2호
    • /
    • pp.221-225
    • /
    • 2008
  • 센서네트워크에서 목표물 탐지하는데 있어 높은 샘플링이 수반되어야 하는 주파수 분석을 피하기 위하여, 낮은 샘플링 데이타를 이용하더라도 목표물 식별이 가능한 시계열(Time-series) 분석 기법으로서 시간 정합 유사도 측정 알고리즘을 소개하고 그 중에 가장 우수한 DTW-Cosine 알고리즘을 제안한다. 시계열 분석 기법을 이용하여 패턴을 비교하기 위해서는 지역 시간 이동 문제와 공간 신호 변이 문제를 극복해야 하는데 DTW-Cosine 알고리즘은 이를 효과적으로 극복함과 동시에 Smoothing 기법을 통하여 다른 시간 정합 유사도 측정 알고리즘들에 비해 전체적으로 최소 10.31% 이상의 우수한 성능을 보였다.

코사인 유사도를 이용한 이주패턴 변화의 정량적 측정 (Quantitative Measure of the Changes of Migration Patterns Using Cosine Similarity)

  • 한이철
    • 농촌계획
    • /
    • 제23권2호
    • /
    • pp.67-74
    • /
    • 2017
  • Migration is defined as the movement of people between residential places, and represents interactions between regions. Changes in migration involve changes in both the number of migrants toward/from regions and migration patterns across regions. However, most migration studies have focused only on the change in migrants, while no empirical study captures changes in migration patterns. In this paper, I present a function using the cosine similarity to measure changes in migration patterns, and apply it to 2001-2016 migration data of Korea. The results show that the migration patterns of Korea shifted in 2007, resulting in two distinct clusters. Local areas experienced various migration pattern changes despite few changes in the number of migrants.

소셜 네트워크에서 감정단어의 단계별 코사인 유사도 기법을 이용한 추천시스템 (Personalized Recommendation System using Level of Cosine Similarity of Emotion Word from Social Network)

  • 권응주;김종우;허노정;강상길
    • 정보화연구
    • /
    • 제9권3호
    • /
    • pp.333-344
    • /
    • 2012
  • 본 논문에서는 개인의 취향과 관심이 반영 되어있는 소셜 정보를 활용하여 사용자에게 영화를 추천할 수 있는 시스템을 제안하였다. 시스템에서 데이터 구축은 포털사이트에서 영화 정보를 수집하고 페이스북과 트위터 같은 SNS를 통해 소셜 정보를 수집한다. 본 논문에서는 사용자의 감정에 따른 보다 정교한 처리를 위하여 6단계의 감정단계로 분류한 소셜 정보의 벡터공간 모형의 구축방법을 제안한다. 추천을 위한 유사도 측도 방법은 2단계로 구성되어 있다. 첫 번째는 일반적인 코사인 측도를 통한 영화 목록의 구축 단계이고, 두 번째는 기존의 코사인 측도(Cosine measure)를 활용한 좌표평면에서 감정 단계별 벡터 정보 표현 방법 및 유사도 측도 방법을 통해 추천 영화 목록의 결정 단계이다. 본 논문의 추천 시스템의 성능을 평가하기 위하여 기존의 추천 시스템과 비교 실험을 통하여 본 연구의 추천 시스템의 유용성을 검증하였다.

키워드를 기반으로 마이너와 코사인 유사도를 이용한 컴퓨터 네트워크 관련 컨퍼런스 분석 (The Analysis of the Conferences for the Computer Network Using the Miner and the Cosine Similarity based upon Keywords)

  • 권영빈;이승도;양현;주요한
    • 한국IT서비스학회지
    • /
    • 제11권1호
    • /
    • pp.223-238
    • /
    • 2012
  • We have been provided with a plenty of information about IT through the conferences. However, it is hard to find enough information or the latest trends from conferences because there are too many conferences. In this situation, we analyzed the latest trends related to the field of IT by exploiting the Netminer which is one of the software for analysis of social networks and measuring the Cosine Similarity between conferences, based upon keywords which are included in the conferences. We analyzed keywords of 24 conferences related to the computer network part of the IEEE (Institute of Electrical and Electronics Engineers) in the case of foreign conferences. We also analyze keywords of the KIISE (Korean Institute of Information Scientists and Engineers) conferences in the case of domestic conferences, during 2009-2010. We identified the trends through the frequency of keywords, the change of top 10 keywords ranking and the similarity between conferences.