In this study, real-time collection of mold vibration signals during injection molding processes was achieved through IoT devices installed on the mold surface. To analyze changes in the collected vibration signals, injection molding was performed under six different process conditions. Analysis of the mold vibration signals according to process conditions revealed distinct trends and patterns. Based on this result, cosine similarity was applied to compare pattern changes in the mold vibration signals. The similarity in time and acceleration vector space between the collected data was analyzed. The results showed that under identical conditions for all six process settings, the cosine similarity remained around 0.92±0.07. However, when different process conditions were applied, the cosine similarity decreased to the range of 0.47±0.07. Based on these results, a cosine similarity threshold of 0.60~0.70 was established. When applied to the analysis of mold vibration signals, it was possible to determine whether the molding process was stable or whether variations had occurred due to changes in process conditions. This establishes the potential use of cosine similarity based on mold vibration signals in future applications for real-time monitoring of molding process changes and anomaly detection.
International Journal of Computer Science & Network Security
/
제22권8호
/
pp.175-186
/
2022
This research article develops an Arabic books' recommendation system, which is based on the content similarity that assists users to search for the right book and predict the appropriate and suitable books pertaining to their literary style. In fact, the system directs its users toward books, which can meet their needs from a large dataset of Information. Further, this system makes its predictions based on a set of data that is gathered from different books and converts it to vectors by using the TF-IDF system. After that, the recommendation algorithms such as the cosine similarity, the sequence matcher similarity, and the semantic similarity aggregate data to produce an efficient and effective recommendation. This approach is advantageous in recommending previously unrated books to users with unique interests. It is found to be proven from the obtained results that the results of the cosine similarity of the full content of books, the results of the sequence matcher similarity of Arabic titles of the books, and the results of the semantic similarity of English titles of the books are the best obtained results, and extremely close to the average of the result related to the human assigned/annotated similarity. Flask web application is developed with a simple interface to show the recommended Arabic books by using cosine similarity, sequence matcher similarity, and semantic similarity algorithms with all experiments that are conducted.
문장 또는 텍스트 유사도란 두 가지 문장의 유사한 정도를 나타내는 척도이다. 텍스트의 유사도를 측정하는 기법으로 자카드 유사도, 코사인 유사도, 유클리디언 유사도, 맨하탄 유사도 등과 같이 있다. 현재 코사인 유사도 기법을 가장 많이 사용하고 있으나 이는 문장에서 단어의 출현 여부와 빈도수에 따른 분석이기 때문에, 의미적 관계에 대한 분석이 부족하다. 이에 우리는 온톨로지를 이용하여 단어 간의 관계를 부여하고, 두 문장에서 공통으로 포함된 단어를 추출할 때 의미적 유사성을 포함함으로써 문장의 유사도에 분석의 효율을 향상하고자 한다.
Al Ghamdi, Norah Mohammad;Khan, Muhammad Badruddin
International Journal of Computer Science & Network Security
/
제22권4호
/
pp.111-118
/
2022
This research article presents the work that is related to the application of different machine learning based similarity techniques on religious text for identifying similarities and differences among its various translations. The dataset includes 10 different English translations of verses (Arabic: Ayah) of two Surahs (chapters) namely, Al-Humazah and An-Nasr. The quantitative similarity values for different translations for the same verse were calculated by using the cosine similarity and semantic similarity. The corpus went through two series of experiments: before pre-processing and after pre-processing. In order to determine the performance of machine learning based similarities, human annotated similarities between translations of two Surahs (chapters) namely Al-Humazah and An-Nasr were recorded to construct the ground truth. The average difference between the human annotated similarity and the cosine similarity for Surah (chapter) Al-Humazah was found to be 1.38 per verse (ayah) per pair of translation. After pre-processing, the average difference increased to 2.24. Moreover, the average difference between human annotated similarity and semantic similarity for Surah (chapter) Al-Humazah was found to be 0.09 per verse (Ayah) per pair of translation. After pre-processing, it increased to 0.78. For the Surah (chapter) An-Nasr, before preprocessing, the average difference between human annotated similarity and cosine similarity was found to be 1.93 per verse (Ayah), per pair of translation. And. After pre-processing, the average difference further increased to 2.47. The average difference between the human annotated similarity and the semantic similarity for Surah An-Nasr before preprocessing was found to be 0.93 and after pre-processing, it was reduced to 0.87 per verse (ayah) per pair of translation. The results showed that as expected, the semantic similarity was proven to be better measurement indicator for calculation of the word meaning.
현재 많은 연구가 진행되고 있는 행위 기반 인증 기술은 다른 인증 기술들에 비해서 인증의 인식률을 높이는데 많은 데이터의 장기간 추출이 필요하다. 본 논문은 안드로이드 환경의 스마트폰에 내재되어있는 터치 센서와 자이로스코프를 이용하여 그동안의 행위 기반 인증 연구에서 사용 되었던 행위 특징 데이터들 중에서 핵심적인 최소한의 데이터들만을 이용하기 위해 사용자에게 다섯 차례의 측정을 요구하여 다섯 번의 터치스크린 화면을 터치 하는 방식으로 총 6가지의 행위 특징 데이터를 수집하였고 다음 터치 측정으로 넘어가는 동안의 데이터들의 변화 값에 평균 값을 구하여 이 값과 측정값의 코사인 유사도 측정을 수행하여 코사인 유사도 허용 범위를 생성 한 후, 인증 시도 데이터의 코사인 유사도 값과 비교하는 방식의 사용자 행위 기반 인증 방식을 제안한다. 본 논문을 통해서 적은 수의 특징 데이터와 실험자수 환경에서도 코사인 유사도 인증 범위에 적용되는 임계값을 조절하는 방식을 통해서 최초 EER 37.6%에서 최종 EER 1.9%의 높은 성능을 증명하는데 성공하였다.
International Journal of Computer Science & Network Security
/
제21권1호
/
pp.97-106
/
2021
Social networking platforms have become a smart way for people to interact and meet on internet. It provides a way to keep in touch with friends, families, colleagues, business partners, and many more. Among the various social networking sites, Twitter is one of the fastest-growing sites where users can read the news, share ideas, discuss issues etc. Due to its vast popularity, the accounts of legitimate users are vulnerable to the large number of threats. Spam and Malware are some of the most affecting threats found on Twitter. Therefore, in order to enjoy seamless services it is required to secure Twitter against malicious users by fixing them in advance. Various researches have used many Machine Learning (ML) based approaches to detect spammers on Twitter. This research aims to devise a secure system based on Hybrid Similarity Cosine and Soft Cosine measured in combination with Genetic Algorithm (GA) and Artificial Neural Network (ANN) to secure Twitter network against spammers. The similarity among tweets is determined using Cosine with Soft Cosine which has been applied on the Twitter dataset. GA has been utilized to enhance training with minimum training error by selecting the best suitable features according to the designed fitness function. The tweets have been classified as spammer and non-spammer based on ANN structure along with the voting rule. The True Positive Rate (TPR), False Positive Rate (FPR) and Classification Accuracy are considered as the evaluation parameter to evaluate the performance of system designed in this research. The simulation results reveals that our proposed model outperform the existing state-of-arts.
센서네트워크에서 목표물 탐지하는데 있어 높은 샘플링이 수반되어야 하는 주파수 분석을 피하기 위하여, 낮은 샘플링 데이타를 이용하더라도 목표물 식별이 가능한 시계열(Time-series) 분석 기법으로서 시간 정합 유사도 측정 알고리즘을 소개하고 그 중에 가장 우수한 DTW-Cosine 알고리즘을 제안한다. 시계열 분석 기법을 이용하여 패턴을 비교하기 위해서는 지역 시간 이동 문제와 공간 신호 변이 문제를 극복해야 하는데 DTW-Cosine 알고리즘은 이를 효과적으로 극복함과 동시에 Smoothing 기법을 통하여 다른 시간 정합 유사도 측정 알고리즘들에 비해 전체적으로 최소 10.31% 이상의 우수한 성능을 보였다.
Migration is defined as the movement of people between residential places, and represents interactions between regions. Changes in migration involve changes in both the number of migrants toward/from regions and migration patterns across regions. However, most migration studies have focused only on the change in migrants, while no empirical study captures changes in migration patterns. In this paper, I present a function using the cosine similarity to measure changes in migration patterns, and apply it to 2001-2016 migration data of Korea. The results show that the migration patterns of Korea shifted in 2007, resulting in two distinct clusters. Local areas experienced various migration pattern changes despite few changes in the number of migrants.
본 논문에서는 개인의 취향과 관심이 반영 되어있는 소셜 정보를 활용하여 사용자에게 영화를 추천할 수 있는 시스템을 제안하였다. 시스템에서 데이터 구축은 포털사이트에서 영화 정보를 수집하고 페이스북과 트위터 같은 SNS를 통해 소셜 정보를 수집한다. 본 논문에서는 사용자의 감정에 따른 보다 정교한 처리를 위하여 6단계의 감정단계로 분류한 소셜 정보의 벡터공간 모형의 구축방법을 제안한다. 추천을 위한 유사도 측도 방법은 2단계로 구성되어 있다. 첫 번째는 일반적인 코사인 측도를 통한 영화 목록의 구축 단계이고, 두 번째는 기존의 코사인 측도(Cosine measure)를 활용한 좌표평면에서 감정 단계별 벡터 정보 표현 방법 및 유사도 측도 방법을 통해 추천 영화 목록의 결정 단계이다. 본 논문의 추천 시스템의 성능을 평가하기 위하여 기존의 추천 시스템과 비교 실험을 통하여 본 연구의 추천 시스템의 유용성을 검증하였다.
We have been provided with a plenty of information about IT through the conferences. However, it is hard to find enough information or the latest trends from conferences because there are too many conferences. In this situation, we analyzed the latest trends related to the field of IT by exploiting the Netminer which is one of the software for analysis of social networks and measuring the Cosine Similarity between conferences, based upon keywords which are included in the conferences. We analyzed keywords of 24 conferences related to the computer network part of the IEEE (Institute of Electrical and Electronics Engineers) in the case of foreign conferences. We also analyze keywords of the KIISE (Korean Institute of Information Scientists and Engineers) conferences in the case of domestic conferences, during 2009-2010. We identified the trends through the frequency of keywords, the change of top 10 keywords ranking and the similarity between conferences.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.