• Title/Summary/Keyword: Cosine Transform

Search Result 478, Processing Time 0.024 seconds

2D Adjacency Matrix Generation using DCT for UWV contents

  • Li, Xiaorui;Lee, Euisang;Kang, Dongjin;Kim, Kyuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.39-42
    • /
    • 2016
  • Since a display device such as TV or signage is getting larger, the types of media is getting changed into wider view one such as UHD, panoramic and jigsaw-like media. Especially, panoramic and jigsaw-like media is realized by stitching video clips, which are captured by different camera or devices. In order to stich those video clips, it is required to find out 2D Adjacency Matrix, which tells spatial relationships among those video clips. Discrete Cosine Transform (DCT), which is used as a compression transform method, can convert the each frame of video source from the spatial domain (2D) into frequency domain. Based on the aforementioned compressed features, 2D adjacency Matrix of images could be found that we can efficiently make the spatial map of the images by using DCT. This paper proposes a new method of generating 2D adjacency matrix by using DCT for producing a panoramic and jigsaw-like media through various individual video clips.

  • PDF

Distribution Approximation of the Two Dimensional Discrete Cosine Transform Coefficients of Image (영상신호 2차원 코사인 변환계수의 분포근사화)

  • 심영석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.10 no.3
    • /
    • pp.130-134
    • /
    • 1985
  • In two-dimensional discrete cosine transform(DCT) coding, the measurements of the distributions of the transform coefficients are important because a better approximation yields a smaller mean square distorition. This paper presents the results of distribution tests which indicate that the statistics of the AC coefficients are well approximated to a generalized Gaussian distribution whose shape parameter is 0.6. Furthermore, from a simulation of the DCT coding, it was shown that the above approximation yields a higher experimental SNR and a better agreement between theory and simulation than the Gaussian or Laplacian assumptions.

  • PDF

Fingerprint Matching Based on Dimension Reduced DCT Feature Vectors

  • Bharkad, Sangita;Kokare, Manesh
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.852-862
    • /
    • 2017
  • In this work a Discrete Cosine Transform (DCT)-based feature dimensionality reduced approach for fingerprint matching is proposed. The DCT is applied on a small region around the core point of fingerprint image. The performance of our proposed method is evaluated on a small database of Bologna University and two large databases of FVC2000. A dimensionally reduced feature vector is formed using only approximately 19%, 7%, and 6% DCT coefficients for the three databases from Bologna University and FVC2000, respectively. We compared the results of our proposed method with the discrete wavelet transform (DWT) method, the rotated wavelet filters (RWFs) method, and a combination of DWT+RWF and DWT+(HL+LH) subbands of RWF. The proposed method reduces the false acceptance rate from approximately 18% to 4% on DB1 (Database of Bologna University), approximately 29% to 16% on DB2 (FVC2000), and approximately 26% to 17% on DB3 (FVC2000) over the DWT based feature extraction method.

Efficient Variable Dimension Quantization of Harmonic Magnitude (효율적인 가변차원 하모닉 크기 양자화기법)

  • 신경진;이인성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.47-54
    • /
    • 2001
  • In this paper, we present a variable dimension vector quantization for spectral magnitudes. Espectially, spectral magnitudes of the Harmonic coder, need variable dimension quantizer because those are not fixed dimension. So, this paper present efficient quantization methods. These methods use variable Discrete Cosine Transform(DCT) for spectral magnitude parameters and NSTVQ which is combined odd/even, split and multi-stage structure, proposed quantization methods use Spectral Distortion(SD) for performance measure. Consequently, Multi-Stage Nonsquare Transform Vector Quantization(MSNSTVQ) is the best in performance measure.

  • PDF

PAPR Reduction and BER Analysis of the OFDM System Using the TR and DCT Transform (톤 예약 기법과 DCT 변환을 이용한 OFDM 시스템의 PAPR 저감과 BER 분석)

  • Byeon, Heui-Seop;Shinn, Byung-Cheol;Ahn, Do-Seob
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.976-984
    • /
    • 2006
  • OFDM system is very useful for the high speed communication system. However, OFDM system has a serious problem of high PAPR that results from the so many subcarriers in the same phase. This OFDM signal is distorted through the nonlinear HPA(High Power Amplifier). Tone reservation method is to insert tone signal in several types to reduce the PAPR after iterating this process by changing the tone signal. Also discrete cosine transform(DCT) can reduces the PAPR as multiplying the cosine value to change the angle and mix up with the data. In the paper, the combination of the TR method and DCT method is newly proposed for more effective reduction of the PAPR. Simulation results show that the proposed method outperforms the conventional simple TR method and DCT method with respect to the PAPR reduction and BER performance.

A study on application of DCT algorithm with MVP(Multimedia Video Processor) (MVP(Multimedia Video Processor)를 이용한 DCT알고리즘 구현에 관한 연구)

  • 김상기;정진현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1383-1386
    • /
    • 1997
  • Discrete cosine transform(DCT) is the most popular block transform coding in lossy mode. DCT is close to statistically optimal transform-the Karhunen Loeve transform. In this paper, a module for DCT encoder is made with TMS320C80 based on JPEG and MPEG, which are intermational standards for image compression. the DCT encoder consists of three parts-a transformer, a vector quantizer and an entropy encoder.

  • PDF