협력 필터링을 통한 추천 시스템은 정보 검색 편의성을 제공함으로써 다방면에서 성공적으로 활용되어왔다. 유사도 측정은 추천인들의 범위를 결정하는 기준이 되기 때문에 이러한 시스템의 성능을 좌우하는 결정적 요소이다. 본 연구에서는 기존의 유사도 측정 공식에서 산출되는 유사도값의 분포를 분석하고, 유사도값과 공통평가항목수와의 관계를 조사하였다. 이를 통해 발견된 문제점을 보완하기 위하여 유사도값의 제한을 통하여 신뢰할 만한 추천인들을 선정하는 방법을 제시하였다. 실험 결과, 유사도의 상한값과 하한값을 동시에 제한하는 방법이 기존보다 월등한 성능 향상을 가져왔다. 특히 적은 수의 최인접이웃을 참조했을 때 두드러졌는데, 코사인 유사도에 대해서는 최대 0.047, 피어슨에 대해서는 최대 0.03의 추천 성능 향상을 보였다. 이 결과는 피어슨과 코사인 유사도를 이용하는 협력필터링 시스템에서 매우 높거나 낮은 유사도의 이웃의 평가 등급은 참조하지 않는 것이 바람직함을 암시한다.
심전도 신호는 시간 및 환경 변화에 따라 측정되는 시계열 데이터로 매번 등록 데이터와 동일한 크기의 비교 데이터를 취득해야 하는 문제점이 발생한다. 본 논문에서는 신호 크기 부적합 문제를 해결하기 위해 가상 생체신호 생성을 위한 보조 분류기 기반 적대적 생성 신경망(Auxiliary Classifier Generative Adversarial Networks)의 네트워크 모델을 제안한다. 생성된 가상 생체신호의 유사성을 확인하기 위해 코사인 각도와 교차 상관관계를 이용하였다. 실험 결과, 코사인 유사도 측정 결과로 평균 유사도는 0.991의 결과를 나타냈으며, 교차 상관관계를 이용한 유클리디언 거리 기반 유사성 측정 결과는 평균 0.25 유사도 결과를 나타냈다. 이는 등록 데이터와 실험 데이터간의 크기가 일치하지 않더라도 가상 생체신호 생성을 통해 신호 크기 부적합 문제를 해결함을 확인하였다.
The glut of information aggravated the process of data analysis and other procedures including data mining. Many algorithms were devised in Big Data and Data Mining to solve such an intricate problem. In this paper, we conducted research about the comparison of several similarity measures and community detection algorithms in collaborative filtering for movie recommendation systems. Movielense data set was used to do an empirical experiment. We applied three different similarity measures: Cosine, Euclidean, and Pearson. Moreover, betweenness and eigenvector centrality were used to detect communities from the network. As a result, we elucidated which algorithm is more suitable than its counterpart in terms of recommendation accuracy.
최근 R&D 투자효율성 제고를 목표로 사업 간의 유사중복 조정에 대한 중요성이 강조되고 있으나, 과제 혹은 예산요구서 내용 등을 텍스트 기반으로 비교하는 기존 유사검색 방식은 내용의 품질 편차 등으로 인해 유의미한 유사성 도출에 제한점이 있다. 이러한 텍스트 기반의 키워드 추출을 통한 유사검색 한계성을 극복하기 위한 방안으로 본 연구에서는 사업 간 유사도 분석 시 과제의 기술분류를 활용한다. 국가R&D사업 조사 분석 시 수집된 과제들의 과학기술표준분류를 추출하여 사업별 고유벡터 모형을 생성 후 이를 이용하여 코사인 기반, 유클리디안 거리기반 알고리즘을 통해 각 사업 간 유사도를 측정하였으며 기존 키워드 추출방식으로 유사도를 측정한 결과와의 비교를 통해 연구 효율성을 검증하였다.
디지털 전환이 가속화되면서 금융 서비스 또한 비대면 서비스의 비중이 높아지고 있다. 최근 모바일 서비스에서 경쟁력을 확보하기 위해 사용자 경험이 대두되고, 사용자 경험을 향상하기 위한 분석 기법이 출현하고 있다. 정량적 평가에 사용되는 데이터 중 하나인 사용자 리뷰 데이터는 불필요한 정보가 다량 포함되어 있어 개선 방향을 도출해내는 데 많은 시간과 에너지가 소요된다. 따라서 본 연구에서는 코사인 유사도 알고리듬을 활용해 사용자 경험 계층을 기준으로 UX 분석 시스템을 개발하고 검증을 위해 국민은행, 우리은행, 카카오뱅크, 토스의 사용자 리뷰 데이터를 분석하는 것을 목표로 한다. 본 연구는 개발된 UX 분석 시스템이 사용자 리뷰 데이터의 분석을 통해 효과적으로 UX 분석이 가능한 시스템이라는 것을 증명하였다. 본 연구의 시스템은 빠르게 고객의 피드백을 반영해야 하는 애자일 조직에서 사용자 경험 계층별 개선 방안을 파악하는 데 용이하게 사용될 수 있을 것으로 기대된다.
Foot drop is a common symptom in stroke patients due to central nervous system (CNS) damage, which causes walking disturbances. Functional electrical stimulation (FES) is an effective rehabilitation method for stroke patients with CNS damage. Aim of this study was to determine the effectiveness of 6 weeks FES walking training based lower limb muscle synergy of stroke patients. Lower limb muscle synergies were extracted from electromyography (EMG) using a non-negative matrix factorization algorithm (NMF) method. Cosine similarity and cross correlation were calculated for similarity comparison with healthy subjects. In both stroke patients, the similarity of leg muscle synergy during walking changed to similar to that of healthy subjects due to a decrease in foot drop during. FES walking intervention influenced the similarity of muscle synergies during walking of stroke patients. This intervention has an effective method on foot drop and improving the gait performance of stroke patients.
빅데이터를 활용한 가치가 증대됨에 따라서 기업 뿐 아니라 교육 분야에서도 빅데이터 분석 기술을 활용한 여러 연구가 진행되고 있다. 본 논문에서는 빅데이터 군집 분석을 이용하여 학습성취도를 종단적으로 예측하는 방법을 제안한다. 제안한 방법에서는 한국아동 청소년패널조사(KCYPS) 자료의 중학교 1학년 학생의 학습 습관 유형을 기반으로 학생들을 Kmeans 알고리즘을 이용하여 학습 습관이 비슷한 그룹으로 분류하고, 그룹의 특징을 추출한다. 다음으로, 이와 같이 추출한 그룹의 특징을 이용하여 테스트 집합의 중학교 1학년 학생을 코사인 유사도를 사용하여 비슷한 학습 습관을 갖는 그룹으로 분류한 후, 이웃을 선정하고 학습성취도를 예측하였다. 본 논문에서 제안한 방법은 중학교의 학습 습관이 대학 및 전공 만족도까지 밀접한 영향을 미쳐서 고등학교의 학습성취도 뿐만 아니라 대학 및 전공에 대한 만족도까지도 예측이 가능하다는 것을 증명하였다.
실시간으로 발생하는 뉴스 기사로부터 이슈를 분석하기 위한 다양한 연구가 진행되어 왔다. 하지만 범주에 따라 계층적으로 이슈를 분석하는 연구는 많이 진행되지 않았고, 계층적 이슈 분석을 위한 기존의 연구에서 제안하는 방식 또한 뉴스 기사 증가에 따라 군집화 속도가 느려지는 문제점이 있다. 따라서 본 논문에서는 준 실시간으로 뉴스 기사의 이슈를 분석하는 계층적·점증적 군집화 방식을 제안한다. 제안하는 군집화 방식은 샴 신경망을 이용한 가중 코사인 유사도 측정 모델 기반의 k-평균 알고리즘을 이용한 단어 군집 기반 문서 표현 방식을 통해 뉴스 기사를 문서 벡터로 표현한다. 그리고 문서 벡터로부터 초기 이슈 군집 트리를 생성하고, 새로 발생한 뉴스 기사를 해당 이슈 군집 트리에 추가하는 점증적 군집화 방식을 제안함으로써 뉴스 기사의 계층적 이슈를 준 실시간으로 분석한다. 마지막으로, 본 논문에서 제안하는 방식과 기존 방식들과의 성능평가를 통해 제안하는 군집화 방식이 정확도 측면에서 기존 방식 대비 NMI 지표 기준 0.26 정도 성능이 향상되었고, 속도 측면에서 약 10배 이상의 성능이 향상됨을 입증하였다.
협력 필터링 시스템에서 데이터 희소성 문제의 해결을 위해 공통평가항목수를 반영하는 방법이 연구되었다. 이러한 방법으로 널리 알려진 자카드 지수는 기존의 유사도 척도와 결합되어 성능을 개선할 수 있었다. 그러나, 다양한 데이터 환경에서 여러 유사도 척도들과 각각 결합했을 때의 성능 개선 효과에 대한 분석 연구는 미미하므로, 본 연구는 이에 대한 분석을 목적으로 한다. 우선 자카드 지수 자체를 유사도 척도로 사용했을때 희소한 데이터셋 상에서 전통적인 척도들보다 월등한 예측 성능을 보였고 추천 성능도 매우 우수하였다. 자카드 지수를 결합함으로써 기존 유사도 척도는 데이터 특성에 상관없이 성능이 대개 향상되었고, 특히 코사인 유사도는 희소한 데이터셋에서 가장 큰 향상을 이루었으나, 평균차이 제곱(Mean Squared Difference)의 유사도는 밀집된 데이터셋에서 오히려 저하된 예측 성능을 보였다. 따라서, 자카드 지수를 결합하여 사용하기 위해 데이터 환경 특성과 유사도 척도를 고려할 필요가 있다.
본 연구는 수검자가 검사 문항을 어떻게 이해했는지를 조사하기 위해 검사문항의 의미표상을 탐구하였다. 잠재의미분석을 활용하여 성격검사문항과 성격요인의 의미표상 간 유사도를 나타내는 의미유사도 행렬을 제안하였고, 이를 기존의 탐색적 요인분석 결과와 비교하였다. 이를 위해 예비 연구에서 대학생 154명을 대상으로 제한된 맥락에서 성격의 5요인을 각각 묘사하는 지문을 수집하였고, 이를 바탕으로 5차원의 축소하여 의미공간을 구성하였다. 연구 1에서는 간편형 한국어 BFI의 요인부하량 행렬과, 예비 연구에서 구성한 의미공간에서 생성한 의미유사도 행렬을 비교하여, 두 행렬이 높은 정적 상관이 있음을 보여주었다. 연구 2에서는 의미유사도를 기반으로 성격검사문항을 생성하고, 수검자의 반응을 수집하여 탐색적 요인분석을 통해 요인구조를 도출하여 두 행렬이 유사함을 보였다. 결론적으로 본 연구는 성격검사에 대한 수검자의 반응 없이 검사문항의 의미표상을 분석하여 구성타당도를 추론할 수 있는 방법을 제안하였고, 성격검사의 요인구조를 검사문항과 성격요인의 의미표상 간 유사도로 해석할 수 있음을 보여주었다. 이러한 결과는 성격검사 개발에 실용적인 도움을 줄 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.