• 제목/요약/키워드: Cortical connectivity

검색결과 21건 처리시간 0.024초

New approach of using cortico-cortical evoked potential for functional brain evaluation

  • Jo, Hyunjin;Kim, Dongyeop;Song, Jooyeon;Seo, Dae-Won
    • Annals of Clinical Neurophysiology
    • /
    • 제23권2호
    • /
    • pp.69-81
    • /
    • 2021
  • Cortico-cortical evoked potential (CCEP) mapping is a rapidly developing method for visualizing the brain network and estimating cortical excitability. The CCEP comprises the early N1 component the occurs at 10-30 ms poststimulation, indicating anatomic connectivity, and the late N2 component that appears at < 200 ms poststimulation, suggesting long-lasting effective connectivity. A later component at 200-1,000 ms poststimulation can also appear as a delayed response in some studied areas. Such delayed responses occur in areas with changed excitability, such as an epileptogenic zone. CCEP mapping has been used to examine the brain connections causally in functional systems such as the language, auditory, and visual systems as well as in anatomic regions including the frontoparietal neocortices and hippocampal limbic areas. Task-based CCEPs can be used to measure behavior. In addition to evaluations of the brain connectome, single-pulse electrical stimulation (SPES) can reflect cortical excitability, and so it could be used to predict a seizure onset zone. CCEP brain mapping and SPES investigations could be applied both extraoperatively and intraoperatively. These underused electrophysiologic tools in basic and clinical neuroscience might be powerful methods for providing insight into measures of brain connectivity and dynamics. Analyses of CCEPs might enable us to identify causal relationships between brain areas during cortical processing, and to develop a new paradigm of effective therapeutic neuromodulation in the future.

남성 알코올 의존 환자 대뇌의 휴지기 네트워크별 피질 두께 (Cortical Thickness of Resting State Networks in the Brain of Male Patients with Alcohol Dependence)

  • 이준기;김시경
    • 생물정신의학
    • /
    • 제24권2호
    • /
    • pp.68-74
    • /
    • 2017
  • Objectives It is well known that problem drinking is associated with alterations of brain structures and functions. Brain functions related to alcohol consumption can be determined by the resting state functional connectivity in various resting state networks (RSNs). This study aims to ascertain the alcohol effect on the structures forming predetermined RSNs by assessing their cortical thickness. Methods Twenty-six abstinent male patients with alcohol dependence and the same number of age-matched healthy control were recruited from an inpatient mental hospital and community. All participants underwent a 3T MRI scan. Averaged cortical thickness of areas constituting 7 RSNs were determined by using FreeSurfer with Yeo atlas derived from cortical parcellation estimated by intrinsic functional connectivity. Results There were significant group differences of mean cortical thicknesses (Cohen's d, corrected p) in ventral attention (1.01, < 0.01), dorsal attention (0.93, 0.01), somatomotor (0.90, 0.01), and visual (0.88, 0.02) networks. We could not find significant group differences in the default mode network. There were also significant group differences of gray matter volumes corrected by head size across the all networks. However, there were no group differences of surface area in each network. Conclusions There are differences in degree and pattern of structural recovery after abstinence across areas forming RSNs. Considering the previous observation that group differences of functional connectivity were significant only in networks related to task-positive networks such as dorsal attention and cognitive control networks, we can explain recovery pattern of cognition and emotion related to the default mode network and the mechanisms for craving and relapse associated with task-positive networks.

Altered Functional Disconnectivity in Internet Addicts with Resting-State Functional Magnetic Resonance Imaging

  • Seok, Ji-Woo;Sohn, Jin-Hun
    • 대한인간공학회지
    • /
    • 제33권5호
    • /
    • pp.377-386
    • /
    • 2014
  • Objective: In this study, we used resting-state fMRI data to map differences in functional connectivity between a comprehensive set of 8 distinct cortical and subcortical brain regions in healthy controls and Internet addicts. We also investigated the relationship between resting state connectivity strength and the level of psychopathology (ex. score of internet addiction scale and score of Barratt impulsiveness scale). Background: There is a lot of evidence of relationship between Internet addiction and impaired inhibitory control. Clinical evidence suggests that Internet addicts have a high level of impulsivity as measured by behavioral task of response inhibition and a self report questionnaire. Method: 15 Internet addicts and 15 demographically similar non-addicts participated in the current resting-state fMRI experiment. For the connectivity analysis, regions of interests (ROIs) were defined based on the previous studies of addictions. Functional connectivity assessment for each subject was obtained by correlating time-series across the ROIs, resulting in $8{\times}8$ matrixs for each subject. Within-group, functional connectivity patterns were observed by entering the z maps of the ROIs of each subject into second-level one sample t test. Two sample t test was also performed to examine between group differences. Results: Between group, the analysis revealed that the connectivity in between the orbito frontal cortex and inferior parietal cortex, between orbito frontal cortex and putamen, between the orbito frontal cortex and anterior cingulate cortex, between the insula and anterior cingulate cortex, and between amydgala and insula was significantly stronger in control group than in the Internet addicts, while the connectivity in between the orbito frontal cortex and insula showed stronger negative correlation in the Internet addicts relative to control group (p < 0.001, uncorrected). No significant relationship between functional connectivity strength and current degree of Internet addiction and degree of impulsitivy was seen. Conclusion: This study found that Internet addicts had declined connectivity strength in the orbitofrontal cortex (OFC) and other regions (e.g., ACC, IPC, and insula) during resting-state. It may reflect deficits in the OFC function to process information from different area in the corticostriatal reward network. Application: The results might help to develop theoretical modeling of Internet addiction for Internet addiction discrimination.

휴지기 기능적 자기공명영상의 독립성분분석기법 기반 내정상태 네트워크 기능 연결성과 확산텐서영상의 트랙토그래피 기법을 이용한 구조 연결성의 통합적 분석 (Combined Analysis Using Functional Connectivity of Default Mode Network Based on Independent Component Analysis of Resting State fMRI and Structural Connectivity Using Diffusion Tensor Imaging Tractography)

  • 최혜정;장용민
    • 한국멀티미디어학회논문지
    • /
    • 제24권5호
    • /
    • pp.684-694
    • /
    • 2021
  • Resting-state Functional Magnetic Resonance Imaging(fMRI) data detects the temporal correlations in Blood Oxygen Level Dependent(BOLD) signal and these temporal correlations are regarded to reflect intrinsic cortical connectivity, which is deactivated during attention demanding, non-self referential tasks, called Default Mode Network(DMN). The relationship between fMRI and anatomical connectivity has not been studied in detail, however, the preceded studies have tried to clarify this relationship using Diffusion Tensor Imaging(DTI) and fMRI. These studies use method that fMRI data assists DTI data or vice versa and it is used as guider to perform DTI tractography on the brain image. In this study, we hypothesized that functional connectivity in resting state would reflect anatomical connectivity of DMN and the combined images include information of fMRI and DTI showed visible connection between brain regions related in DMN. In the previous study, functional connectivity was determined by subjective region of interest method. However, in this study, functional connectivity was determined by objective and advanced method through Independent Component Analysis. There was a stronger connection between Posterior Congulate Cortex(PCC) and PHG(Parahippocampa Gyrus) than Anterior Cingulate Cortex(ACC) and PCC. This technique might be used in several clinical field and will be the basis for future studies related to aging and the brain diseases, which are needed to be translated not only functional connectivity, but structural connectivity.

시간적 일화기억인출에 관여하는 뇌기능연결성 연구 (Interactivity within large-scale brain network recruited for retrieval of temporally organized events)

  • 나윤진;이종현;한상훈
    • 인지과학
    • /
    • 제29권3호
    • /
    • pp.161-192
    • /
    • 2018
  • 부호화된 사건의 시간적 정보를 기반으로 한 인출은 일화기억의 중요한 통제기제 중 하나이다. 기억인출과 관련한 수많은 신경영상 연구들이 진행되었음에도 아직 시간적으로 구성된 일화기억의 인출에 관여하는 뇌신경연결망 패턴에 대해서는 알려진 바가 많지 않다. 본 연구에서는 두가지 다른 순차적 인출 뇌신경 기제를 구분하기 위하여 과제기반 기능적 연결성 다변량 패턴분석 방법을 사용하였다. 참가자들은 시간적 일화기억과제를 수행하였고, 순서대로 부호화된 기억자극을 순방향 혹은 역방향으로 인출하도록 지시를 받았다. 부분적으로 분류된 국소적 신경네트워크 패턴은 두 인출기제를 잘 구분하지 못한 반면, 기억과 관련된 인지통제 영역과 목표-지향적 인지기제처리에 관련된 것으로 알려진 여러 피질-피질하 노드들을 아우르는 전뇌신경네트워크 패턴은 시간적 일화기억 인출기제를 잘 구분하였다. 이 영역들은 측면/내측 전전두엽 영역, 하부 두정엽, 중간 측두회, 선조체 영역 등을 포함하며 기계학습을 이용한 분류에서 높은 분류 예측률을 보였다. 본 연구의 결과는 일화기억의 시간적 인출기제에 관여하는 피질-피질하 여러 영역의 관여를 확인하였고, 대역적 네트워크 패턴의 기능적 연결성이 질적으로 다른 인출기제에 관여함을 확인하였다는데에 중요성을 갖는다.

Action Observation and Cortical Connectivity: Evidence from EEG Analysis

  • Kim, Sik-Hyun;Cho, Jeong-Sun
    • The Journal of Korean Physical Therapy
    • /
    • 제28권6호
    • /
    • pp.398-407
    • /
    • 2016
  • Purpose: The purpose of this study was to examine the changes in electroencephalogram (EEG) coherence and brain wave activity for first-person perspective action observation (1AO) and third-person perspective action observation (3AO) of healthy subjects. Methods: Thirty healthy subjects participated in this study. EEG was simultaneously recorded during the Relax period, the 1AO, and the 3AO, with event-related desynchronization (ERD) and coherence connectivity process calculations for brain wave (alpha, beta and mu) rhythms in relation to the baseline. Results: Participants showed increased coherence in beta wave activity in the frontal and central areas (p<0.05), during the 1AO using right-hand activity. Conversely, the coherence of the alpha wave decreased statistically significantly decreased in the frontocentral and parieto-occipital networks during the observation of the 1AO and the 3AO. The ERD values were larger than 40% for both central regions but were slightly higher for the C4 central region. The high relative power of the alpha wave during 1AO and 3AO was statistically significantly decreased in the frontal, central, parietal, and occipital regions. However, the relative power of the beta wave during 1AO and 3AO was statistically significantly increased in the parietal and occipital regions. Especially during 1AO, the relative power of the beta wave in the C3 area was statistically significantly increased (p<0.05). Conclusion: These findings suggest that 1AO and 3AO action observations are relevant to modifications of specific brain wave coherence and ERD values. EEG cortical activity during action observation may contribute to neural reorganization and to adaptive neuroplasticity in clinical intervention.

Cocaine-induced Changes in Functional Connectivities between Simultaneously Recorded Single Neurons in the SI Cortex and the VPL Thalamus of Conscious Rats

  • Shin, Hyung-Cheul;Park, Hyoung-Jin;Oh, Yang-Seok;Chapin, John K.
    • The Korean Journal of Physiology
    • /
    • 제27권1호
    • /
    • pp.79-91
    • /
    • 1993
  • The present study was carried out to determine the effects of cocaine (0.25, 1.0, 10.0 mg/kg, i.p.) on the interactions between spontaneously active neurons within ensembles of simultaneously recorded neurons in the primary somatosensory cortex (Sl, n= 20) and the ventroposterolateral (VPL, n= 16) thalamic nucleus of awake rats. Spike triggered cross correlation histograms were constructed between pairs of simultaneously recorded neurons. Among 101 neuronal pairs analyzed, 22.7% showed correlations indicative of various functional connections among the cortical cells, two corticothalamic interactions and one thalamocortical excitatory interaction. There were also 15 cofiring activities among SI cortical cells. These functional connectivities appeared to be modulated (weakened, abolished, or strengthened) during the 5 to 30 min following cocaine injection. The effects of saline were tested as a control, but it did not appear to alter the functional connectivities. In general, cocaine-induced changes of the functional interactions were mainly due to the concomitant alterations of the uncorrelated background discharges. These results suggest that the biphasic effects of cocaine on the spontaneously established neural networks among the SI cortical and the VPL thalamic cells of conscious rat were mainly indirect. However, various changes of the functional interactions by different doses of cocaine appeared to be a possible neural network mechanism for the cocaine induced modulation of afferent somatosensory transmission.

  • PDF

제1형 양극성장애 환자에서 대뇌피질 주름 패턴의 변형 : Local Gyrification Index 분석 (Alterations of Cortical Folding Patterns in Patients with Bipolar I Disorder : Analysis of Local Gyrification Index)

  • 이준용;한규만;원은수;이민수;함병주
    • 생물정신의학
    • /
    • 제24권4호
    • /
    • pp.225-234
    • /
    • 2017
  • Objectives Local gyrification reflects the early neural development of cortical connectivity, and is regarded as a potential neural endophenotype in psychiatric disorders. Several studies have suggested altered local gyrification in patients with bipolar I disorder (BD-I). The purpose of the present study was to investigate the alterations in the cortical gyrification of whole brain cortices in patients with BD-I. Methods Twenty-two patients with BD-I and age and sex-matched 22 healthy controls (HC) were included in this study. All participants underwent T1-weighted structural magnetic resonance imaging (MRI). The local gyrification index (LGI) of 66 cortical regions were analyzed using the FreeSurfer (Athinoula A. Martinos Center for Biomedical Imaging). One-way analysis of covariance (ANCOVA) was used to analyze the difference of LGI values between two groups adjusting for age and sex as covariates. Results The patients with BD-I showed significant hypogyria in the left pars opercularis (uncorrected-p = 0.049), the left rostral anterior cingulate gyrus (uncorrected-p = 0.012), the left caudal anterior cingulate gyrus (uncorrected-p = 0.033). However, these findings were not significant after applying the multiple comparison correction. Severity or duration of illness were not significantly correlated with LGI in the patients with BD-I. Conclusions Our results of lower LGI in the anterior cingulate cortex and the ventrolateral prefrontal cortex in the BD-I group implicate that altered cortical gyrification in neural circuits involved in emotion-processing may contribute to pathophysiology of BD-I.

An Extensive Analysis of High-density Electroencephalogram during Semantic Decision of Visually Presented Words

  • Kim, Kyung-Hwan;Kim, Ja-Hyun
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권4호
    • /
    • pp.170-179
    • /
    • 2006
  • The purpose of this study was to investigate the spatiotemporal cortical activation pattern and functional connectivity during visual perception of words. 61 channel recordings of electroencephalogram were obtained from 15 subjects while they were judging the meaning of Korean, English, and Chinese words with concrete meanings. We examined event-related potentials (ERP) and applied independent component analysis (ICA) to find and separate simultaneously activated neural sources. Spectral analysis was also performed to investigate the gamma-band activity (GBA, 30-50 Hz) which is known to reflect feature binding. Five significant ERP components were identified and left hemispheric dominance was observed for most sites. Meaningful differences of amplitudes and latencies among languages were observed. It seemed that familiarity with each language and orthographic characteristics affected the characteristics of ERP components. ICA helped confirm several prominent sources corresponding to some ERP components. The results of spectral and time-frequency analyses showed distinct GBAs at prefrontal, frontal, and temporal sites. The GBAs at prefrontal and temporal sites were significantly correlated with the LPC amplitude and response time. The differences in spatiotemporal patterns of GBA among languages were not prominent compared to the inter-individual differences. The gamma-band coherence revealed short-range connectivity within frontal region and long-range connectivity between frontal, posterior, and temporal sites.

Finding Needles in a Haystack with Light: Resolving the Microcircuitry of the Brain with Fluorescence Microscopy

  • Rah, Jong-Cheol;Choi, Joon Ho
    • Molecules and Cells
    • /
    • 제45권2호
    • /
    • pp.84-92
    • /
    • 2022
  • To understand the microcircuitry of the brain, the anatomical and functional connectivity among neurons must be resolved. One of the technical hurdles to achieving this goal is that the anatomical connections, or synapses, are often smaller than the diffraction limit of light and thus are difficult to resolve by conventional microscopy, while the microcircuitry of the brain is on the scale of 1 mm or larger. To date, the gold standard method for microcircuit reconstruction has been electron microscopy (EM). However, despite its rapid development, EM has clear shortcomings as a method for microcircuit reconstruction. The greatest weakness of this method is arguably its incompatibility with functional and molecular analysis. Fluorescence microscopy, on the other hand, is readily compatible with numerous physiological and molecular analyses. We believe that recent advances in various fluorescence microscopy techniques offer a new possibility for reliable synapse detection in large volumes of neural circuits. In this minireview, we summarize recent advances in fluorescence-based microcircuit reconstruction. In the same vein as these studies, we introduce our recent efforts to analyze the long-range connectivity among brain areas and the subcellular distribution of synapses of interest in relatively large volumes of cortical tissue with array tomography and superresolution microscopy.