• Title/Summary/Keyword: Cortical activity

Search Result 240, Processing Time 0.033 seconds

Electroencephalographic Characteristics of Alcohol Dependent Patients : 3-Dimensional Source Localization (알코올 의존 환자군의 뇌파 특성 : 3차원적 신호원 국소화)

  • Seo, Sangchul;Im, Sungjin;Lee, Sang-Gu;Shin, Chul-Jin
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.2
    • /
    • pp.87-94
    • /
    • 2015
  • Objectives The power spectral analysis of electroencephalogram has been widely used to reveal the pathophysiology of the alcoholic brain. However, the results were not consistent and the three dimensional study can be hardly found. The purpose of this study was to investigate characteristics of the three dimensional electroencephalographic (EEG) activity of alcohol dependent patients using standardized low resolution electromagnetic tomography (sLORETA). Methods The participants consisted of 30 alcohol dependent patients and 30 normal healthy controls. All the participants were males who had refrained from alcohol at least one month and were not taking any medications. Thirty two channel EEG data was collected in the resting state with eyes-closed condition during 30 seconds. The three dimensional data was compared between two groups using sLORETA for delta, theta, alpha, beta1, beta2, and beta3 frequency bands. Results sLORETA revealed significantly increased brain cortical activity in alpha, beta1, beta2, and beta3 bands each in alcohol dependent patients compared to normal controls. The voxels showing the maximum significance were in the left transverse temporal gyrus, left superior temporal gyrus, left anterior cingulate, and left fusiform gyrus in alpha, beta1, beta2, and beta3 bands respectively. Conclusions These results suggest that chronic alcohol intake may cause neurophysiological changes in cerebral activity. Therefore, the measuring of EEG can be helpful in understanding the pathophysiology of cognitive impairements in alcohol dependence.

Screening of Natural Products for Endothelial and Renal Nitric Oxide Production

  • Kim, Hyeyoung;Han, Sang-Won
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.90-90
    • /
    • 1997
  • Natural products, which have been used for the treatment of hypertension, diuresis and nephritis in traditional oriental medicine, were selected for the screening of nitric oxide (NO) production in endothelial cells and kidney tissues in vitro as well as in vivo by measuring the conversion of [$\^$14/C]-L-arginine to [$\^$14/C]-L-citrulline, a coproduct of the enzyme reaction with NO. Confluent monolayer of endothelial cells were used for the screening of 16 natural products. Among the natural products, Zizyphus jujuba and Codonopsis pilosula stimulated endothelial NO synthase activity. Thus, both confluent monolayer of endothelial cells and kidney homogenates (glomeruli, cortical tubules, meudllae) were treated with Zizyphus jujuba and Codonopsis pilosula (final concentration 10 $\mu\textrm{g}$/$m\ell$) and NO releases were compared with those by receptor - dependent agonists, bradykinin and ADP and receptor - independent calcium ionophore A23187 in vitro. In rat experiment, NO releases in glomeruli, cortical tubules and medullae and plasma renin activity were assessed after intraperitoneal injection of Zizyphus jujuba and Codonopsis pilosula (10 mg/kg/day for 4 days). As a result, both Zizyphus jujuba and Codonopsis pilosula significantly increased NO releases in cultured endothelial cells, kidney tissues in vitro as well as in vivo. Stimulation of NO releases by Zizyphus jujuba and Codonopsis pilosula was similar to those by receptor - dependent agonists, bradykinin and ADP and receptor - independent calcium ionophore A23187 in cultured endothelial cells. However, plasma renin activity was not influenced by these two natural products. In conclusion, stimulatory effects of Zizyphus jujuba and Codonopsis pilosula on NO release in kidney may contribute their hypotensive effects and antinephritic action possibly by increasing renal blood flow.

  • PDF

Effects of the 3D Visual Feedback Exercise with Action Observation on the Posture Alignment and Cerebral Cortex Activation in Forward Head Posture (3D 시각적 피드백과 동작관찰을 이용한 운동이 전방머리자세의 자세 정렬과 대뇌겉질 활성도에 미치는 영향)

  • Kang, Hyojeong;Yang, Hoesong;Kim, Minkyu
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.1
    • /
    • pp.113-124
    • /
    • 2020
  • Purpose : The purpose of this study was to investigate the effects of exercise intervention combined with 3D visual feedback and motion observation on postural alignment and cerebral cortical activity in subjects with forward head posture (FHP). Methods : The study included 28 participants with FHP, randomly divided into a 3D visual feedback plus motion observation group (n=14) or control group (n=14). The experimental group received corrective exercise combined with 3D visual feedback and motion observation for FHP, three times a week for four weeks. We examined cervical spine radiographs in the lateral standing position with both arms crossed to measure the craniovertebral angle (CVA) and cervical lordosis (CL). Relative alpha (RA) and beta waves (RB) were measured by wireless dry EEG. Results : The CVA value was significantly different between the groups, and the CL value was significantly different only in the experimental group. RA and RB values were not significantly different before and after intervention in the control group. RB values were significantly decreased before and after intervention in the experimental group. Conclusion : Based on the results of this study, we suggest that interventions combined with motion observation and 3D visual feedback may be effective as exercise methods to improve postural alignment and cerebral activity in subjects with FHP. Further research is required to generalize our results on technical supplementation complemented with 3D visual feedback devices.

Frontal Gamma-band Hypersynchronization in Response to Negative Emotion Elicited by Films (영상에 의해 유발된 부정적 감정 상태에 따른 전두엽 감마대역 신경동기화)

  • Kim, Hyun;Choi, Jongdoo;Choi, Jeong Woo;Yeo, Donghoon;Seo, Pukyeong;Her, Seongjin;Kim, Kyung Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.124-133
    • /
    • 2018
  • We tried to investigate the changes in cortical activities according to emotional valence states during watching video clips. We examined the neural basis of two emotional states (positive and negative) using spectral power analysis and brain functional connectivity analysis of cortical current density time-series reconstructed from high-density electroencephalograms (EEGs). Fifteen healthy participants viewed a series of thirty-two 2 min emotional video clips. Sixty-four channel EEGs were recorded. Distributed cortical sources were reconstructed using weighted minimum norm estimation. The temporal and spatial characteristics of spectral source powers showing significant differences between positive and negative emotion were examined. Also, correlations between gamma-band activities and affective valence ratings were determined. We observed the changes of cortical current density time-series according to emotional states modulated by video clip. Gamma-band activities showed significant difference between emotional states for thirty seconds at the middle and the latter half of the video clip, mainly in prefrontal area. It was also significantly anti-correlated with the self-ratings of emotional valence. In addition, the gamma-band activities in frontal and temporal areas were strongly phase-synchronized, more strongly for negative emotional states. Cortical activities in frontal and temporal areas showed high spectral power and inter-regional phase synchronization in gamma-band during negative emotional states. It is inferred that the higher amygdala activation induced by negative stimuli resulted in strong emotional effects and caused strong local and global synchronization of neural activities in gamma-band in frontal and temporal areas.

Influence of Hippocampectomy and Adrenalectomy upon Gastric Ulceration in Rats (흰쥐의 위궤양 발생에 미치는 뇌해마 제거 및 부신 적출의 영향)

  • Kim, Myung-Suk;Ahn, Byung-Tae;Kim, Chul
    • The Korean Journal of Physiology
    • /
    • v.10 no.2
    • /
    • pp.39-45
    • /
    • 1976
  • This study was conducted to see whether the hippocampectomy exerted facilitatory influence upon gastric ulceration in animals, and if so, whether the effect of hippocampectomy could be suppressed by adrenalectomy. 107 male rats were divided into 5 groups: rats that had over 90% of their hippocampal tissue removed through an opening on each side of the cerebral cortex(hippocampal group, N=21), rats that received bilateral adrenalectomy(adrenal group, N=29), rats that received adrenalectomy as well as hippocampectomy(hippocampo-adrenal group, N=10), rats that received damage to each side of the cortex over the hippocampus(cortical control group, N=20), and rats that had solely their head skin incised(normal control group, N=27). All rats were kept without restraint or food deprivation until on the 25th day after surgery, the stomach of each rat was inflated with 7ml of physiological saline and then removed under deep anesthesia. The mucosal surface was sketched under dissecting microscope, and enlarged photographs$(4{\times})$ were taken. The percentage of animals developing gastric ulcer in each animal group was calculated, the number of ulcer in each stomach was counted, and the total area of ulceration per stomach was measured on the Photograph with the aid of superimposed graph paper and expressed as permillage of total area of the glandular mucosa. Results obtained were as follows: 1. The percentage of animals developing gastric ulcer was significantly larger in the hippocampal group than they were in the hippocampo-adrenal, the adrenal, the cortical, and the normal control groups. 2. The mean number of ulcer per stomach was significantly larger in the hippocampal group than they were in the adrenal, the cortical control, and the normal control groups, while no significant difference existed between the hippocampal and the hippocampo-adrenal groups. 3. Total area of ulcer per stomach was significantly larger in the hippocampal group than they were in the cortical control and the normal control groups, but no significant differ-ence existed among the hippocampal, the adrenal, and the hippocampo·adrenal groups. 4. All measured values of the adrenal group were not significantly different from those of the hippocampo-adrenal, the cortical control, and the normal control groups. It is inferred from the above results that the hippocampus exerts an inhibitory influence upon gastric ulceration and that the hippocampal influence is mediated only partly through suppression of pituitary·adrenal activity.

  • PDF

Neuroprotective Activity of Caffeic Acid Isolated from Lonicera japonica (금은화에서 분리한 Caffeic Acid의 신경세포보호 활성)

  • Son, Yerim;Ma, Choong Je
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.1
    • /
    • pp.30-35
    • /
    • 2020
  • We previously reported that caffeic acid isolated from Lonicera japonica showed potent neuroprotective activities against glutamate injured neuronal cell death in primary cortical cells. In this study, we tried to confirm the neuroprotective activity in glutamate injured HT22 cells and elucidate mechanisms of neuroprotective action of caffeic acid. We used glutamate induced HT22 cell death as a bioassay system. The compound decreased reactive oxygen species increased by high concentration of glutamate treatment in HT22 cells. Also, Ca2+ concentration was decreased by this compound. This compound made mitochondrial membrane potential maintain to normal condition. This also affected anti-oxidative enzymes and glutathione contents. Treatment of this compound increased not only glutathione reductase and peroxidase to the control level and also amount of glutathione, an endogeneous antioxidant. These experimental results showed that caffeic acid isolated from L. japonica exerted potent neuroprotective activity through the anti-oxidative pathway.

Studies on the Physiology of Hibernation - with particular reference to blood level of insulin - (동면에 관한 연구 - 혈중 Insulin 농도의 변화 -)

  • Kang, Bok-Soon;Kang, Doo-Hee
    • The Korean Journal of Physiology
    • /
    • v.6 no.1
    • /
    • pp.19-26
    • /
    • 1972
  • Physiological changes in hibernating animals (Manchurian Chipmunk and Hamster) were studied during various phases of the hibernation. The results obtained are summarized as follows. 1. Rectal temperature was declined markedly during hibernation, whereas it remained constant even in exposure of the animals to 0 C environment if the animals were not prepared for hibernation. As body temperature was lowered, heart rate was also markedly reduced as well as respiration and blood pressure. 2. The electrical activity recorded from cortical structure was characterized by replacement of fast wave activity by slow wave activity as body temperature was lowered and became flat at body temperature below 20C. 3. Blood glucose level showed no clear seasonal variations. However, the glycogen contents of the liver were markedly greater during the cold seasons than during the warm seasons. 4. Blood levels of insulin showed no clear seasonal variations.

  • PDF

Neuroactivation studies using Functional Brain MRI (기능적 자기공명영상을 이용한 뇌활성화 연구)

  • Chung, Kyung-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.1
    • /
    • pp.63-72
    • /
    • 2003
  • Functional MRI (fMRI) provides an indirect mapping of cerebral activity, based on the detection of the local blood flow and oxygenation changes following neuronal activity (Blood Oxygenation Level Dependent). fMRI allows us to study noninvasively the normal and pathological aspects of functional cortical organization. Each fMRI study compares two different states of activity. Echo-Planar Imaging is the technique that makes it possible to study the whole brain at a rapid pace. Activation maps are calculated from a statistical analysis of the local signal changes. fMRI is now becoming an essential tool in the neurofunctional evaluation of normal volunteers and many neurological patients as well as the reference method to image normal or pathologic functional brain organization.

Zinc-induced Neurotoxicity and Its Role in Brain Diseases

  • Koh, Jae-Young
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.14-14
    • /
    • 1998
  • Mammalian brian contains substantial amounts of chelatable zinc in presynaptic vesicles of certain glutamatergic terminals. The synaptic zinc is released with intense neuronal activity, suggesting its role in synaptic transmission. However, in pathological conditions, zinc may get released too excessively, which may contribute to neuronal death as shown in cortical cultures.(omitted)

  • PDF