• 제목/요약/키워드: Corrupted Labels

검색결과 2건 처리시간 0.018초

DeepCleanNet: Training Deep Convolutional Neural Network with Extremely Noisy Labels

  • Olimov, Bekhzod;Kim, Jeonghong
    • 한국멀티미디어학회논문지
    • /
    • 제23권11호
    • /
    • pp.1349-1360
    • /
    • 2020
  • In recent years, Convolutional Neural Networks (CNNs) have been successfully implemented in different tasks of computer vision. Since CNN models are the representatives of supervised learning algorithms, they demand large amount of data in order to train the classifiers. Thus, obtaining data with correct labels is imperative to attain the state-of-the-art performance of the CNN models. However, labelling datasets is quite tedious and expensive process, therefore real-life datasets often exhibit incorrect labels. Although the issue of poorly labelled datasets has been studied before, we have noticed that the methods are very complex and hard to reproduce. Therefore, in this research work, we propose Deep CleanNet - a considerably simple system that achieves competitive results when compared to the existing methods. We use K-means clustering algorithm for selecting data with correct labels and train the new dataset using a deep CNN model. The technique achieves competitive results in both training and validation stages. We conducted experiments using MNIST database of handwritten digits with 50% corrupted labels and achieved up to 10 and 20% increase in training and validation sets accuracy scores, respectively.

Deep learning framework for bovine iris segmentation

  • Heemoon Yoon;Mira Park;Hayoung Lee;Jisoon An;Taehyun Lee;Sang-Hee Lee
    • Journal of Animal Science and Technology
    • /
    • 제66권1호
    • /
    • pp.167-177
    • /
    • 2024
  • Iris segmentation is an initial step for identifying the biometrics of animals when establishing a traceability system for livestock. In this study, we propose a deep learning framework for pixel-wise segmentation of bovine iris with a minimized use of annotation labels utilizing the BovineAAEyes80 public dataset. The proposed image segmentation framework encompasses data collection, data preparation, data augmentation selection, training of 15 deep neural network (DNN) models with varying encoder backbones and segmentation decoder DNNs, and evaluation of the models using multiple metrics and graphical segmentation results. This framework aims to provide comprehensive and in-depth information on each model's training and testing outcomes to optimize bovine iris segmentation performance. In the experiment, U-Net with a VGG16 backbone was identified as the optimal combination of encoder and decoder models for the dataset, achieving an accuracy and dice coefficient score of 99.50% and 98.35%, respectively. Notably, the selected model accurately segmented even corrupted images without proper annotation data. This study contributes to the advancement of iris segmentation and the establishment of a reliable DNN training framework.