• Title/Summary/Keyword: Corrugated horn antenna

Search Result 23, Processing Time 0.016 seconds

Analysis of Annular Corrugated Horn using FDTD (환상 골진 혼 안테나의 FDTD에 의한 해석)

  • 김도현;손병문;구연건
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1067-1075
    • /
    • 2001
  • The fields at the aperture of conical horn antenna with corrugations parallel to the axis have been analyzed using FDTD(Finite Difference Time Domain). Easy calculation depending on the change of the structure of antenna and time reduction can be achieved by 2-D FDTD coding with the first-order Mur ABC(absorbing boundary condition). It is confirmed that the corrugation can reduce phase difference of field on aperture. also it is investigated that the directivity is increased by 6.1 %, 12.9%, and 28.4% with one corrugation, two corrugations, three corrugations, respectively. It is also found that the improvement of the characteristics of the antenna is not proportional to the number of the corrugation but more dependent on the location of the corrugation near the aperture than that far the aperture.

  • PDF

The Antenna Design for Korea SAT-5 Satellite Communication in Ka-band (무궁화 5호 위성통신용 Ka대역 안테나 설계)

  • Kim, Chun-Won;Cheong, Chi-Hyun;Kim, Kun-Woo;Lee, Seong-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.90-97
    • /
    • 2014
  • In this paper, we have designed the antenna for Korea SAT-5 Satellite Communication which can use Ka band in the earth station. The antenna structure consist of the the dual-offset gregorian reflector that has high gain and efficiency, the corrugated horn that has symmetric radiation patterns and low side lobe levels, the iris polarizer that make circular polarization and the OrthoMode Transducer that separate transmitting and receiving signals. The designed antenna gain is more than 45.7dBi in Tx-band which use LHCP and 42.0dBi in Rx-band which use RHCP. The co-polarized and cross-polarized radiation pattern comply with ITU-R S.580-6 and S.731-1 that are recommended by International Telecommunication Union in the geostationary satellite. The Axial ratio is less than 1.0dB in Tx-band and 1.5dB in Rx-band that meet MIL-STD-188-164A.

Transmitter Design for Earth Station Terminal Operating with Military Geostationary Satellites on Ka-band (Ka 대역 군위성통신 지상단말 송신기 설계)

  • Kim, Chun-Won;Park, Byung-Jun;Yoon, Won-Sang;Lee, Seong-Jae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.393-400
    • /
    • 2014
  • In this paper, we have designed the transmitter for earth station terminal operating with military geostationary satellite on Ka-band that is complied with MIL-STD-188-164A. The designed antenna of this terminal is dual-offset gregorian reflector which is consist of corrugated horn and iris polarizer, othermode transducer. This antenna meets radiation pattern and transmit EIRP spectral density requirements in this standard. The designed RF systems of this terminal are consist of Block Up Converter(BUC) converting frequency band from IF to Ka band and SSPA having low-power consumption and compact light-weight using the pHEMT MMIC compound devices. This RF systems applied with VSWR, spurious/harmonic suppression, output flatness and phase noise requirement in this standard.