• 제목/요약/키워드: Corrugated boards

검색결과 23건 처리시간 0.016초

Manufacturing Characteristics of Cement-Bonded Wood Composite Board as Sound Absorption Type-Noise Barrier

  • Suh, Jin-Suk;Kang, Eun-Chang;Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권6호
    • /
    • pp.50-56
    • /
    • 2004
  • This study was conducted to investigate the performance of sound absorption type-noise barriers manufactured with a combination of wood particles used for particleboard, recycled waste newspaper, and cement. An average density of wood-combined cement board was in the range from 0.83 to 0.96 g/cm3, showing relatively low-density board. Regardless of types of cement bonded board or wooden board, the board with concave holes(凹)-formed surfaces showed greater sound absorption coefficient compared to those of flat surface boards. The board density was not related with those coefficients. Accordingly, it was concluded that concave or deep corrugated surface structure has played an important role in sound absorption for the application of sound absorption type-noise barrier.

Measurement of Fiber Board Poisson's Ratio using High-Speed Digital Camera

  • Choi, Seung-Ryul;Choi, Dong-Soo;Oh, Sung-Sik;Park, Suk-Ho;Kim, Jin-Se;Chun, Ho-Hyun
    • Journal of Biosystems Engineering
    • /
    • 제39권4호
    • /
    • pp.324-329
    • /
    • 2014
  • Purpose: The finite element method (FEM) is advantageous because it can save time and cost by reducing the number of samples and experiments in the effort to identify design factors. In computational problem-solving it is necessary that the exact material properties are input for achieving a reliable analysis. However, in the case of fiber boards, it is difficult to measure their cross-directional material properties because of their small thickness. In previous research studies, the Poisson's ratio was measured by analyzing ultrasonic wave velocities. Recently, the Poisson's ratio was measured using a high-speed digital camera. In this study, we measured the transverse strain of a fiber board and calculated its Poisson's ratio using a high-speed digital camera in order to apply these estimates to a FEM analysis of a fiber board, a corrugated board, and a corrugated box. Methods: Three different fiber board samples were used in a uniaxial tensile test. The longitudinal strain was measured using the Universal Testing Machine. The transverse strain was measured using an image processing method. To calculate the transverse strain, we acquired images of the fiber board before the test onset and before the fracture occurred. Acquired images were processed using the image processing program MATLAB. After the images were converted from color to binary, we calculated the width of the fiber board. Results: The calculated Poisson's ratio ranged between 0.2968-0.4425 (Machine direction, MD) and 0.1619-0.1751 (Cross machine direction, CD). Conclusions: This study demonstrates that measurement of the transverse properties of a fiber board is possible using image processing methods. Correspondingly, these processing methods could be used to measure material properties that are difficult to measure using conventional measuring methodologies that employ strain gauge extensometers.

Polylactic Acid Coating Affects the Ring Crush Strength of Linerboards

  • Lee, Jun-Ho;Rhim, Jong-Whan
    • 펄프종이기술
    • /
    • 제38권5호
    • /
    • pp.54-59
    • /
    • 2006
  • Paperboards used for linerboard of corrugated fiberboard box were coated with different concentrations of polylactic acid (PLA) solution and the effects of harsh environmental conditions such as high humidity and temperature (96% RH at $30^{\circ}C$ for up to 5 days), and freeze-thaw ($-20^{\circ}C$ for a day and then thaw at room temperature for 30 min) conditions on the ring crush (RC) strength of the boards were investigated. One to five percent PLA solutions were coated onto SC manila linerboard ($20{\times}27cm$) using a No. 20 wire bar coater and the ring crush strength was measured using a computer-controlled Advanced Universal Testing System in accordance with TAPPI Test Method T 822 om-93. The RC strength increased significantly when the concentration of coating solution increased and appreciable changes were found when the concentration increased from 0 to 2% (P<0.05). Similar pattern of results was found after 5-day storage at $30^{\circ}C$ and 96% RH. Although such highly humid condition increased moisture content in the samples up to 3.95 from 0.97 times, the RC strength decreased in the range from 29.9 to 48.5%. The freeze-thaw treatment increased the moisture content only up to 1.27% and the reduction in the RC strength ranged from 21.1 to 28.1 %. The results were promising: the samples coated with 5% PLA solution showed 29.9% reduction in the RC strength while that of control was 48.5% during highly humid condition stated above.