• Title/Summary/Keyword: Corrosion weight

Search Result 603, Processing Time 0.02 seconds

Development of a Blended Corrosion, Scale and Micro-Organism Inhibitor for Open Recirculating Cooling System

  • Choi, Dong-Jin;You, Seung-Jae;Kim, Jung-Gu;Hwang, Woo-Suk
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.89-94
    • /
    • 2005
  • This paper presents the results of a study that was undertaken to optimize the ratio of the components of a new multi-component inhibitor blend composed of orthophosphate/ phosphonates/ acrylate copolymer/ isothiazolone. The effects of newly developed inhibitor on carbon steel dissolution in synthetic cooling water were studied through weight loss tests, electrochemical tests, scale tests, and micro-organism tests. The obtained results were compared to blank (uninhibited specimen) and showed that developed inhibitor revealed very good corrosion, scale, and micro-organism inhibition simultaneously. All measurements indicated that the efficiency of the blended mixture exceeded 90 %. The inhibitive effects arose from formation of protective films which might contain calcium phosphate, calcium phosphonate, and iron oxide. The nature of protective films formed on the carbon steel was studied by scanning electron microscopy (SEM) and auger electron spe ctroscopy (AES). Inhibitor used in this study appeared to have better performance for scale inhibition due to their superior crystal modification effect and excellent calcium carbonate scale inhibition properties. The effect of inhibitor on microorganisms was evaluated through minimum inhibitory concentration (MIC) test. All kinds of micro-organisms used in this study were inhibited under 78ppm concentration of inhibitor.

An Investigation of Mild Steel with Nitrogen-containing Inhibitor in Hydrochloric Acid

  • Horng, Y.T.;Tsai, Yi-Liang;Tu, Ching-Fang;Lee, Chien-Ming;Wei, F.I.;Shih, H.C.
    • Corrosion Science and Technology
    • /
    • v.2 no.5
    • /
    • pp.233-237
    • /
    • 2003
  • Pickling inhibitors can be used to form an adsorbed layer on the metal surface to hinder the discharge of H^+$ and dissolution of metal ions. Nitrogen-containing inhibitors were selected as corrosion inhibitors for mild steel (MS) in pickling acid process. In this study, the addition of inhibitor, the pickling temperatures and the pickling times were the parameters to investigate the effects on the inhibition efficiency (IE) for MS by using weight loss measurement. Preliminary results show that the IE increased with the increase in pickling time from 10 minutes to 60 minutes, and the IE also increased with the increase in temperature at room temperature and $40^{\circ}C$. At the higher temperature. the IE values are higher and almost independent with the pickling time. Furthermore, the potentiodynamic polarization, open circuit corrosion potential-time and corrosion current-time studies show that nitorgen-containing inhibitor behaves predominantly as cathodic polarization. The roughness test and SEM investigation are also studied in this paper.

Evaluation on cavitation damage in sea water with shot peening stand-off distance for ALBC3 alloy (ALBC3 합금의 쇼트피닝 분사거리에 따른 해수 내 캐비테이션 손상 평가)

  • Han, Min-Su;Jang, Seok-Ki;Kim, Jong-Sin;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.239-244
    • /
    • 2013
  • Marine equipment exposed to harsh environments requires not only excellent corrosion resistance but also improvement of physical characteristics against natural material degradation. With growing interests in ocean energy resources, the higher reliability for marine equipment has become more important in terms of material characteristics. ALBC3 alloy represents excellent corrosion resistance and is widely used in corrosive environments. However, cavitation damage occurs frequently due to its poor durability in high flow rate of marine environment. In this research, shot peening technology was employed as a surface modification with shot peening stand-off distance to mitigate cavitation damage. The effects of shot peening on extent of cavitation damage and weight loss were evaluated for both shot peened and non-peened specimens. The results revealed that the application of shot peeing decreased cavitation damage for all experimental conditions in comparison with the non-peened specimens. The optimum stand-off distance was determined to be 10 cm, since more than 35 % of cavitation damage reduction was observed.

Experimental investigation on durability performance of rubberized concrete

  • Guneyisi, Erhan;Gesoglu, Mehmet;Mermerdas, Kasim;Ipek, Suleyman
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.193-207
    • /
    • 2014
  • The study presented herein aims to investigate the durability related properties of rubberized concrete. Two types of waste scrap tire rubber were used as fine and coarse aggregate, respectively. The rubber was replaced with aggregate by three crumb rubber and tire chips levels of 5, 15, and 25% for the rubberized concrete productions. In order to improve the transport properties and corrosion resistance of rubberized concretes, SF was replaced with cement at 10% replacement level by weight of total binder content. The transport properties of the rubberized concretes were investigated through water absorption, gas permeability, and water permeability tests. The corrosion behavior of reinforcing bars embedded in plain and silica fume based rubberized concretes was investigated by linear polarization resistance (LPR) test. The results indicated that the utilization of SF in the rubberized concrete production enhanced the corrosion behavior and decreased corrosion current density values. Moreover, the reduction in the water and gas permeability coefficients was observed by the incorporation of SF in plain and especially rubberized concretes.

Effects of Air Void at the Steel-Concrete Interface on the Corrosion Initiation of Reinforcing Steel in Concrete under Chloride Exposure

  • Nam Jin-Gak;Hartt William H.;Kim Kijoon
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.829-834
    • /
    • 2005
  • A series of reinforced G109 type specimens was fabricated and pended with a 15 weight percent NaCl solution. Mix design variables included 1) two cement alkalinities (equivalent alkalinities of 0.32 and 1.08), 2) w/c 0.50 and 3) two rebar surface conditions (as-received and wire-brushed). Potential and macro-cell current between top and bottom bars were monitored to determine corrosion initiation time. Once corrosion was initiated, the specimen was ultimately autopsied to perform visual inspection, and the procedure included determination of the number and size of air voids along the top half of the upper steel surface. This size determination was based upon a diameter measurement assuming the air voids to be half spheres or ellipse. The followings were reached based upon the visual inspection of G109 specimens that were autopsied to date. First, voids at the steel-concrete interface facilitated passive film breakdown and onset of localized corrosion. Based upon this, the initiation mechanism probably involved a concentration cell with contiguous concrete coated and bare steel serving as cathodes and anodes, respectively. Second, the corrosion tended to initiate at relatively large voids. Third, specimens with wire-brushed steel had a lower number of voids at the interface for both cement alkalinities, suggesting that air voids preferentially formed on the rough as-received surface compared to the smooth wire brushed one.

Corrosion Inhibition of Copper-nickel Alloy: Experimental and Theoretical Studies

  • Khadom, Anees A.;Yaro, Aprael S.;Musa, Ahmed Y.;Mohamad, Abu Bakar;Kadhum, Abdul Amir H.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.4
    • /
    • pp.406-415
    • /
    • 2012
  • The corrosion inhibition of copper-nickel alloy by Ethylenediamine (EDA) and Diethylenetriamine (DETA) in 1.5M HCl has been investigated by weight loss technique at different temperatures. Maximum value of inhibitor efficiency was 75% at $35^{\circ}C$ and 0.2 M inhibitor concentration EDA, while the lower value was 4% at $35^{\circ}C$ and 0.01 M inhibitor concentration DETA. Two mathematical models were used to represent the corrosion rate data, second order polynomial model and exponential model respectively. Nonlinear regression analysis showed that the first model was better than the second model with high correlation coefficient. The reactivity of studied inhibitors was analyzed through theoretical calculations based on density functional theory (DFT). The results showed that the reactive sites were located on the nitrogen (N1, N2 and N4) atoms.

High-Temperature Corrosion Behavior of 316 L Stainless Steel in Carbon Dioxide Environment (고온 이산화탄소 분위기에서 316 L 스테인리스강의 부식 거동)

  • Chae, Hobyung;Seo, Sukho;Jung, Yong Chan;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.552-556
    • /
    • 2017
  • Evaluation of the durability and stability of materials used in power plants is of great importance because parts or components for turbines, heat exchangers and compressors are often exposed to extreme environments such as high temperature and pressure. In this work, high-temperature corrosion behavior of 316 L stainless steel in a carbon dioxide environment was studied to examine the applicability of a material for a supercritical carbon dioxide Brayton cycle as the next generation power plant system. The specimens were exposed in a high-purity carbon dioxide environment at temperatures ranging from 500 to $800^{\circ}C$ during 1000 hours. The features of the corroded products were examined by optical microscope and scanning electron microscope, and the chemical compound was determined by x-ray photoelectron spectroscopy. The results show that while the 316 L stainless steel had good corrosion resistance in the range of $500-700^{\circ}C$ in the carbon dioxide environment, the corrosion resistance at $800^{\circ}C$ was very poor due to chipping the corroded products off, which resulted in a considerable loss in weight.

Efficient Complex Surfactants from the Type of Fatty Acids as Corrosion Inhibitors for Mild Steel C1018 in CO2-Environments

  • Abbasov, Vagif M.;El-Lateef, Hany M. Abd;Aliyeva, Leylufer I.;Ismayilov, Ismayil T.;Qasimov, Elmar E.;Narmin, Mamedova M.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.25-34
    • /
    • 2013
  • The efficiency of three complex surfactants based on sunflower oil and nitrogen containing compounds as corrosion inhibitors for mild steel in $CO_2$-saturated 1% NaCl solution, has been determined by weight loss and LPR corrosion rate measurements. These compounds inhibit corrosion even at very low concentrations. The inhibition process was attributed to the formation of an adsorbed film on the metal surface that protects the metal against corrosive media. The inhibition efficiency increases with increasing the concentration of the studied inhibitors. Maximum inhibition efficiency of the surfactants is observed at concentrations around its critical micellar concentration (CMC). Adsorption of complex surfactants on the mild steel surface is in agreement with the Langmuir adsorption isotherm model, and the calculated Gibbs free energy values confirm the chemical nature of the adsorption. Energy dispersive X-ray fluorescence microscopy (EDRF) observations of the electrode surface confirmed the existence of such an adsorbed film.

A Study on Corrosion Properties of welded Alloy 625 for Ship Structure by Shielding Gases Composite Ratio (선체 구조용 Alloy 625의 용접시 보호가스 조성비에 따른 부식특성에 관한 연구)

  • An Jae-Pil;Park Keyung-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.399-406
    • /
    • 2005
  • Alloy 625 is used widely in industrial applications such as aeronautical aerospace, chemical, petrochemical and marine applications. Because of a good combination of yield strength. tensile strength, creep strength, excellent fabricability, weldability and good resistance to high temperature corrosion on prolonged exposure to aggressive environments. High qualify weldments for this material are readily produced by commonly used processes. But all of processes are not applicable to this material by reason of unavailability of matching, position or suitable welding filler metals and fluxes may limit the choice of welding processes. Recently, the flux cored wire is developed and applied for the better productivity in several welding position including the vortical position. In this study. the weldability and weldment characteristics of Alloy 625 are evaluated in FCAW weld associated with the several shielding gases($80\%Ar+20\%\;CO_2,\;50\%Ar+50\%\;CO_2.\;100\%\;CO_2$) in viewpoint of welding productivity. The results of the experimental study on corrosive characteristics of Alloy 625 are as follows; There is no remarkable difference among shielding gases. however they has a striking difference among corrosive solutions by results of distinguished density and time of corrosive solution. Generally, the shielding gases($80\%Ar+20\%\;CO_2$) was superior to the other gases on high temperature tensile and a low temperature impact. but all of the shield gases were making satisfactory results on corrosion test.

High Temperature Corrosion Properties of Heat Resistant Chrome Steels in SO2 Atmosphere (고온 이산화황 환경 내 내열 크롬강에 대한 부식특성 연구)

  • Lee, Han-sang;Jung, Jine-sung;Kim, Eui-hyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.99-106
    • /
    • 2009
  • The high temperature corrosion properties of heat resistant steels were investigated in oxidation atmosphere including sulfur dioxide. The heat resistant steels of T22, T92, T122, T347HFG and T304H were evaluated at 620, $670^{\circ}C$ for 400 hours. The corrosion rates showed a decreasing tendency while chrome contents of those steels increased from 2 mass.% to 19 mass.%. The in crease in temperature increasement has an more effect on the corrosion rates of low chrome steels than high chrome steels. The weight gains of T22, T92, T304H at $670^{\circ}C$ were 3.7, 1.65, 1.23 times compared with those at $620^{\circ}C$. The external scale formed on T22 was composed of hematite, magnetite and Fe-Cr spinel and internal layer including iron oxide mixed with sulfide. The scales formed on T92, T122, T304H consisted of an outer layer of hematite and inner layer of chrome oxide and hematite. The proportion of chrome oxide at inner layer was increased when the chrome contents in heat resistant steels were increased.