• 제목/요약/키워드: Corrosion shape

검색결과 266건 처리시간 0.03초

Ti-6Al-4V 합금의 가공에서 공구 수명 향상을 위한 엔드밀 형상의 선정에 관한 연구 (Study on the Selection of End Mill Shape to Improve Tool Life in End Mill Process of Ti-6Al-4V Alloy)

  • 김도혁;정윤교;조영태
    • 한국기계가공학회지
    • /
    • 제18권11호
    • /
    • pp.76-82
    • /
    • 2019
  • This study aims to find the shapes of an end-mill with low cutting temperature during the end-mill process of Ti-6Al-4V alloy. Such ${\alpha}-{\beta}$ titanium alloys are increasingly more used for their high tensile strength and high corrosion resistance. The cutting characteristics of Ti-6Al-4V alloy were studied using an analytical method validated by comparing the estimated cutting resistance with that from experiments. The end-mill shape was analyzed using an experimental method. The end-mill shape with low cutting resistance and low cutting temperature was confirmed by analyzing the signal-to-noise ratios for various conditions. Then, the factors with significance factor of 95% or more were determined in the variance analysis. Finally, an end-mill shape that can ensure a low cutting temperature was proposed.

Environmental Conditions in the Reheating Furnace for High Quality Advanced High Strength Steels for Automobiles

  • Sohn, Il-Ryoung;Chin, Kwang-Geun
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.193-197
    • /
    • 2007
  • It is well known that the development of Advanced High Strength Steels (AHSS) is very important for the automotive industry in order to improve fuel efficiency and the reduction of material costs. However, it is particularly difficult to improve the surface quality of AHSS because the high amount of Si, Al, Mn and Ti etc. in AHSS promote selective oxidation, resulting in surface defects. The reheating process in the hot strip mill would cause severe oxidation because it is carried out at elevated temperatures under aggressive environments. In this study a reheating furnace simulator was developed to investigate oxidation phenomena in the reheating process. The environmental gas for the reheating furnace was made by burning coke oven gas with air in the simulator. The air/fuel ratio is precisely controlled by MFC. Ti oxides are easily formed on grain boundaries and Mn and Si oxides are usually formed in inner grains near the steel surface with a small round shape.

알카리 수용액에서 Mg-Al 합금의 양극산화시 전류밀도와 양극산화 시간의 효과 (Effects of Time and Current Density in Anodizing of Mg-Al Alloy in Alkaline Solution)

  • 장석기;김성종;김정일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.107-115
    • /
    • 2005
  • The effects on the formation of anodic oxide films on Mg-Al alloy (AZ91) in 1M-NaOH solution was investigated using parameters of current density and time during anodizing The general tendency has been confirmed that the increase of anodizing time improves the corrosion resistance. It is considered that the formation of anodic oxide film was increased by increasing the applied current and the anodizing time to generate active dissolution reaction In anodizing at constant current density. passivity potentials shifted to noble direction with increasing current densities. It was confirmed that oxygen quantify in anodic oxide films increased with anodizing time. The compact films above 4 $mA/cm^2$ were formed with the shape of an island in grooves at early stage and then grew with combination of the islands

Studies on the Performance of Self Healing of Plastic Cracks Using Natural Fibers in Concrete

  • Saraswathy, Velu;Kwon, Seung-Jun;Karthick, Subbiah
    • 한국건설순환자원학회논문집
    • /
    • 제2권2호
    • /
    • pp.115-127
    • /
    • 2014
  • Addition of fibers in cement or cement concrete may be of current interest, but this is not a new idea or concept. Fibers of any material and shape play an important role in improving the strength and deformation characteristics of the cement matrix in which they are incorporated. The new concept and technology reveal that the engineering advantages of adding fibers in concrete may improve the fracture toughness, fatigue resistance, impact resistance, flexural strength, compressive strength, thermal crack resistance, rebound loss, and so on. The magnitude of the improvement depends upon both the amount and the type of fibers used. In this paper, locally available waste fibers such as coir fibers, sisal fibers and polypropylene fibers have incorporated in concrete with varying percentages and l/d ratio and their effect on compressive, split, flexural, bond and impact resistance have been reported.

형상과 표면처리에 따른 GFRP 바의 부착성능 (Bond Test of GFRP Rebars with Shape and Surface Treatments)

  • 유영준;박지선;박영환;유영찬;김긍환;김형열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.329-332
    • /
    • 2005
  • R.C. bridges may require strengthening during the service life. The main cause of durability problem of R.C. bridges is the corrosion of reinforcing steel. For this reason, researches to solve the problem have been conducted but the achievements are just for improving, not the solution. Fiber Reinforced Polymers are recognized as the alternative materials for solving the problem due to the excellent corrosion-resistant property, light-weight and higher strength than steel. This paper presents experimental results and theoretical consideration of bond test for new type GFRP rebar

  • PDF

Corrosion Behaviors of Dental Implant Alloy after Micro-sized Surface Modification in Electrolytes Containing Mn Ion

  • Kang, Jung-In;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • 제11권2호
    • /
    • pp.71-81
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the corrosion behaviors of dental implant alloy after microsized surface modification in electrolytes containing Mn ion. Materials and Methods: $Mn-TiO_2$ coatings were prepared on the Ti-6Al-4V alloy for dental implants using a plasma electrolytic oxidation (PEO) method carried out in electrolytes containing different concentrations of Mn, namely, 0%, 5%, and 20%. Potentiodynamic method was employed to examine the corrosion behaviors, and the alternatingcurrent (AC) impedance behaviors were examined in 0.9% NaCl solution at $36.5^{\circ}C{\pm}1.0^{\circ}C$ using a potentiostat and an electrochemical impedance spectroscope. The potentiodynamic test was performed with a scanning rate of $1.667mV\;s^{-1}$ from -1,500 to 2,000 mV. A frequency range of $10^{-1}$ to $10^5Hz$ was used for the electrochemical impedance spectroscopy (EIS) measurements. The amplitude of the AC signal was 10 mV, and 5 points per decade were used. The morphology and structure of the samples were examined using field-emission scanning electron microscopy and thin-film X-ray diffraction. The elemental analysis was performed using energy-dispersive X-ray spectroscopy. Result: The PEO-treated surface exhibited an irregular pore shape, and the pore size and number of the pores increased with an increase in the Mn concentration. For the PEO-treated surface, a higher corrosion current density ($I_{corr}$) and a lower corrosion potential ($E_{corr}$) was obtained as compared to that of the bulk surface. However, the current density in the passive regions ($I_{pass}$) was found to be more stable for the PEO-treated surface than that of the bulk surface. As the Mn concentration increased, the capacitance values of the outer porous layer and the barrier layer decreased, and the polarization resistance of the barrier layers increased. In the case of the Mn/Ca-P coatings, the corroded surface was found to be covered with corrosion products. Conclusion: It is confirmed that corrosion resistance and polarization resistance of PEO-treated alloy increased as Mn content increased, and PEO-treated surface showed lower current density in the passive region.

아말감의 구강내 부식 및 인공 부식에 관한 연구 (A STUDY ON IN VIVO AND IN VITRO AMALGAM CORROSION)

  • 임병목;권혁춘;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제22권1호
    • /
    • pp.1-33
    • /
    • 1997
  • The objective of this study was to analyze the in vitro and in vivo corrosion products of low and high copper amalgams. The four different types of amalgam alloy used in this study were Fine cut, Caulk spherical, Dispersalloy, and Tytin. After each amalgam alloy and Hg were triturated according to the directions of the manufacturer by means of the mechanical amalgamator(Amalgam mixer. Shinhung Co. Korea), the triturated mass was inserted into a cylindrical metal mold which was 12mm in diameter and 10mm in height. The mass was condensed by 150Kg/cm compressive force. The specimen was removed from the mold and aged at room temperature for about seven days. The standard surface preparation was routinely carried out by emery paper polishing under running water. In vitro amalgam specimens were potentiostatically polarized ten times in a normal saline solution at $37^{\circ}C$(potentiostat : HA-301. Hukuto Denko Corp. Japan). Each specimen was subjected to anodic polarization scan within the potential range -1700mV to+400mV(SCE). After corrosion tests, anodic polarization curves and corrosion potentials were obtained. The amount of component elements dissolved from amalgams into solution was measured three times by ICP AES(Inductive Coupled Plasma Atomic Emission Spectrometry: Plasma 40. Perkim Elmer Co. U.S.A.). The four different types of amalgam were filled in occlusal and buccal class I cavities of four human 3rd molars. After about five years the restorations were carefully removed after tooth extraction to preserve the structural details including the deteriorated margins. The occlusal surface, amalgam-tooth interface and the fractured surface of in vivo amalgam corrosion products were analyzed. In vivo and in vitro amalgam specimens were examined and analyzed metallographically by SEM(Scanning Electron Microscope: JSM 840. Jeol Co. Japan) and EDAX(Energy Dispersive Micro X-ray Analyser: JSM 840. Jeol Co. Japan). 1. The following results are obtained from in vitro corrosion tests. 1) Corrosion potentials of all amalgams became more noble after ten times passing through the in vitro corrosion test compared to first time. 2) After times through the test, released Cu concentration in saline solution was almost equal but highest in Fine cut. Ag and Hg ion concentration was highest in Caulk spherical and Sn was highest in Dispersalloy. 3) Analyses of surface corrosion products in vitro reveal the following results. a)The corroded surface of Caulk spherical has Na-Sn-Cl containing clusters of $5{\mu}m$ needle-like crystals and oval shapes of Sn-Cl phase, polyhedral Sn oxide phase. b)In Fine cut, there appeared to be a large Sn containing phase, surrounded by many Cu-Sn phases of $1{\mu}m$ granular shapes. c)Dispersalloy was covered by a thick reticular layer which contained Zn-Cl phase. d)In Tytin, a very thin, corroded layer had formed with irregularly growing Sn-Cl phases that looked like a stack of plates. 2. The following results are obtained by an analysis of in vivo amalgam corrosion products. 1) Occlusal surfaces of all amalgams were covered by thick amorphous layers containing Ca-P elements which were abraded by occlusal force. 2) In tooth-amalgam interface, Ca-P containing products were examined in all amalgams but were most clearly seen in low copper amalgams. 3) Sn oxide appeared as a polyhedral shape in internal space in Caulk spherical and Fine cut. 4) Apical pyramidal shaped Sn oxide and curved plate-like Sn-Cl phases resulted in Dispersalloy. 5) In Tytin, Sn oxide and Sn hydroxide were not seen but polyhedral Ag-Hg phase crystal appeared in internal space which assumed a ${\beta}_l$ phase.

  • PDF

Thermomechanical and electrical resistance characteristics of superfine NiTi shape memory alloy wires

  • Qian, Hui;Yang, Boheng;Ren, Yonglin;Wang, Rende
    • Smart Structures and Systems
    • /
    • 제30권2호
    • /
    • pp.183-193
    • /
    • 2022
  • Structural health monitoring and structural vibration control are multidisciplinary and frontier research directions of civil engineering. As intelligent materials that integrate sensing and actuation capabilities, shape memory alloys (SMAs) exhibit multiple excellent characteristics, such as shape memory effect, superelasticity, corrosion resistance, fatigue resistance, and high energy density. Moreover, SMAs possess excellent resistance sensing properties and large deformation ability. Superfine NiTi SMA wires have potential applications in structural health monitoring and micro-drive system. In this study, the mechanical properties and electrical resistance sensing characteristics of superfine NiTi SMA wires were experimentally investigated. The mechanical parameters such as residual strain, hysteretic energy, secant stiffness, and equivalent damping ratio were analyzed at different training strain amplitudes and numbers of loading-unloading cycles. The results demonstrate that the detwinning process shortened with increasing training amplitude, while austenitic mechanical properties were not affected. In addition, superfine SMA wires showed good strain-resistance linear correlation, and the loading rate had little effect on their mechanical properties and electrical resistance sensing characteristics. This study aims to provide an experimental basis for the application of superfine SMA wires in engineering.

Influence of shape and finishing on the corrosion of palladium-based dental alloys

  • Milheiro, Ana;Muris, Joris;Kleverlaan, Cornelis J.;Feilzer, Albert J.
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권1호
    • /
    • pp.56-61
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate the effects of the surface treatment and shape of the dental alloy on the composition of the prosthetic work and its metallic ion release in a corrosive medium after casting. MATERIALS AND METHODS. Orion Argos (Pd-Ag) and Orion Vesta (Pd-Cu) were used to cast two crowns and two disks. One of each was polished while the other was not. Two as-received alloys were also studied making a total of 5 specimens per alloy type. The specimens were submersed for 7 days in a lactic acid/sodium chloride solution (ISO standard 10271) and evaluated for surface structure characterization using SEM/EDAX. The solutions were quantitatively analysed for the presence of metal ions using ICP-MS and the results were statistically analysed with one-way ANOVA and a Tukey post-hoc test. RESULTS. Palladium is released from all specimens studied (range $0.06-7.08{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$), with the Pd-Cu alloy releasing the highest amounts. For both types of alloys, ion release of both disk and crown pairs were statistically different from the as-received alloy except for the Pd-Ag polished crown (P>.05). For both alloy type, disk-shaped pairs and unpolished specimens released the highest amounts of Pd ions (range $0.34-7.08{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$). Interestingly, in solutions submerged with cast alloys trace amounts of unexpected elements were measured. CONCLUSION. Shape and surface treatment influence ion release from dental alloys; polishing is a determinant factor. The release rate of cast and polished Pd alloys is between $0.06-0.69{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$, which is close to or exceeding the EU Nickel Directive 94/27/EC compensated for the molecular mass of Pd ($0.4{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$). The composition of the alloy does not represent the element release, therefore we recommend manufacturers to report element release after ISO standard corrosion tests beside the original composition.

치과용(齒科用) 은(銀)-파라디움합금(合金)의 합금원소(合金元素)가 제성질(諸性質)에 미치는 영향(影響)에 관(關)한 연구(硏究) (EFFECTS OF ALLOYING ELEMENTS ON VARIOUS PROPERTIES OF DENTAL SILVER-PALLADIUM ALLOYS)

  • 김춘진;박남수
    • 대한치과보철학회지
    • /
    • 제22권1호
    • /
    • pp.95-108
    • /
    • 1984
  • Even though the tarnishing and corrosion problems characteristic with dental silver-palladium alloy are not yet fully solved, it is recently widely used because of its low cost. However the effects of major alloying elements on the various properties of this system are not fully understood. The object of this research is to clarify the effects of In and Zn additives on the corrosion and tarnishing resistances and precipitation hardening behavior of this sytem, using electrodynamic polarization, immersion, and Vicker's microhardness test and X-ray diffraction and electron probe micro analysis methods. The obtained results were as follows: I. As indium content is increased, both the corrosion resistance in Cl-solution and microhardness are also increased while the tarnishing resistance is decreased. 2. As Zinc content is increased, the corrosion resistance is decreased, but tarnishing resistance is increased 3. At 70Ag-25Pd-2.5Zn-2.5In composition, the precipitation harding behavior was mot significant. The optimum aging temperature was $450^{\circ}C$ and the time was 2 hrs. The resulting specimen of this work carried 180VHN. 4. Under the heat treatment, the changes in the mechanical property are due to the changes in the shape and composition of dendrite matrix, namely, it is because of the precipitation hardening behavior which has been proved by electron probe micro analysis and optical microscopic finding.

  • PDF