• Title/Summary/Keyword: Corrosion products

Search Result 387, Processing Time 0.027 seconds

Monitoring of the Content of Imidazoline-Containing Corrosion Inhibitor

  • Zadorozhny, P.A.;Sukhoverkhov, S.V.;Markin, A.N.;Savin, K.I.;Prokuda, N.A.
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.161-166
    • /
    • 2017
  • The qualitative composition of active components of the corrosion inhibitor CGW-85567 was studied. It was found that С18:2 and С18:1 imidazolines and the corresponding imidazolin-amides are the major components. The HPLC/MS technique was developed for their determination in the water solutions of monoethylene glycol (MEG). Industrial application of the inhibitor showed that MEG solution retained high concentration of the inhibitor for a long time after ceasing its addition into pipelines. Low values of the partition coefficients (0.010-0.014) of imidazolines in the system "water solution of MEG (concentration of MEG 62-85% v/v) - gas condensate" have allowed to pass on from the technology of continuous pumping of the inhibitor into protected pipelines to the periodic dosing technology. Taking into account a long time of circulation in the system and high temperatures during MEG regeneration process possible degradation products of the inhibitor were studied. N, N-dimethyl-dodecanamine-1, and N, N-dimethyl-tetradecanamine-1 were identified as major degradation products of the corrosion inhibitor CGW-85567.

A Study on Ferrite Stainless Steel Corrosion Resistance or Mechanical Characteristics of 434LD2 ABS Sensor Ring (센서 링이 내식성과 기계적 특성에 관한 연구)

  • 양현수;금영준;정풍기
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.1
    • /
    • pp.129-141
    • /
    • 2003
  • In this thesis, using the 400 series ferrite stainless steel such as 434LD$_2$ which are furter excellent then the existing ferric products in mechanical characteristics, and experiment has been conducted on corrosion resistance of sensor ring. The results are following. 1. The products before sintering are much more corrodible in the condition of spray test of salt water and ammonia than humidity and nitrogen condition. 2. 434LD$_2$ ferrite stainless steel has shown a good corrosion resistance without an addition surface treatment. thus the decreasing production process has been obtained. 3. As hardness value of $H_{RB}$ 80 and tensile test, 434LD$_2$ ferrite stainless steel with show a good endurance when it is combined to constant velocity joint (c/v joint), and has a good hardness properties endurable to sand and pebble impact.

Resistance of Cementitious Binders against a Fall in the pH at Corrosion Initiation

  • Song, Ha-Won;Jung, Min-Sun;Ann, Ki Yong;Lee, Chang-Hong
    • Corrosion Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.110-115
    • /
    • 2009
  • At the onset of corrosion of steel in concrete, hydrogen ions usually evolve in the process of electrochemical reaction, thereby decreasing the pH of the pore solution, which can be buffered by cement hydration products, as being representatively illustrated by calcium hydroxide. Hence, a fall in the pH is dependent on properties of cement hydration (i.e. hydration products and degree of hydration). The present study tested acid neutralization capacity (ANC) of cementitious binders of OPC(Ordinary Portland Cement), 30% PFA(Pulverized Fuel Ash), 60% GGBS(Ground Granulated Blast Furnace Slag), 10% SF(Silica Fume) to quantify the resistance of cement matrix to a pH fall. Cement pastes were cast at 0.4 of a free W/C ratio with 1.5% chlorides by weight of binder in cast. Powder samples obtained crushed and ground specimen after 200 days of curing were diluted in still water combined with different levels of 1M nitric acid solution, ranging from 0.5 to 20 mol/kg. Then, the pH of diluted solution was monitored until any further change in the pH did not take place. It was seen that the pH of the diluted solution gradually decreased as the molar amount of nitric acid increased. At some particular values of the pH, however, a decrease in the pH was marginal, which can be expressed in the peak resistances to a pH fall in the ANC curve. The peaks occurred at the variations in the pH, depending on binder type, but commonly at about 12.5 in the pH, indicate a resistance of precipitated calcium hydroxide. The measurement of water soluble chloride at the end of test showed that the amount of free chloride was significantly increased at the pH corresponding to the peaks in the ANC curve, which may reflect the adsorption of hydration products to chlorides.

The Study on the Acceleration Factor of Coastal Outdoor Corrosion test, Salt Spray Test and Accelerated Corrosion Test using 0.5wt% carbon steel (0.5wt% 탄소강을 이용한 해안 야외부식시험과 염수분무시험, 가속부식시험의 가속계수에 대한 연구)

  • Cho, E.Y.;Gwon, G.B.;Cho, D.H.;Kim, J.Y.
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.209-214
    • /
    • 2013
  • In the industry, accelerated corrosion test is used for the life time prediction. When anti-corrosion test proceeds in real environments, it is difficult that we predict and evaluate the corrosion life time because of the long test time such as 10 years or more time. Accelerated corrosion test and Salt spray test are able to test corrosion life time of products in the laboratory instead of outdoor corrosion test. Experimental procedure is selected for the corrosion standard specimen, exposure of the specimens, measurements of the mass loss and evaluating the mass loss data. As a result, the acceleration factor of the accelerated corrosion test to the outdoor corrosion test is 414.8. Therefore we can predict the corrosion life time of carbon steel during a short time period.

Corrosion Behaviour of Some Alloys in Tropical Urban and Marine Atmospheres

  • Dang, Vu Ngoan;Bui, Ba Xuan;Nguyen, Nhi Tru
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.125-129
    • /
    • 2008
  • Results of corrosion testing for different grades of titanium, copper, zinc, alluminium alloys and steels after two years of outdoor exposure under humid tropical urban and marine conditions have been presented and discussed. Mass loss and corrosion product characteristics for the exposed specimens at Hanoi testing site with high humidity and Nhatrang marine stations (at 100 and 1,000 meters distances from sea) with different airborne salinities (35.9 and $90.0mg/m^2.d$ respectively) have been selected for investigation. From time dependence of the specimen mass loss and corrosion product characteristics, the strong influence of environmental parameters upon durability for the investigated metals and alloys has been demonstrated. Only titanium alloys show high resistance to the marine conditions. All the other specimens (copper, zinc, alluminium alloys and steels) have been underwent strong deterioration under influence of aerosol salinity. Results of corrosion products analysis have been also presented for characterization of environmental impact on the metal degradation processes.

Effects of Surface Roughness on Atmospheric Corrosion of Galvanized Steel Sheets (아연도금 강판의 대기부식에 미치는 표면 거칠기의 영향)

  • 안진호;강성군;장세기
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.6
    • /
    • pp.307-316
    • /
    • 1998
  • The effects of surface roughness on chromate conversion coating and the corrosion behavior of galvanized steel sheets were investigated. Surface roughness was differently given to the galvanized steel sheets tested and these were then chromated. Accelerated corrosion test was conducted under the condition of $30^{\circ}C$, 90%RH with flowing 200ppm $SO_2$ gas. The galvanized steels were also exposed to urban environment for 5 weeks. The corrosion rates were measured by weight gain method. The distribution of chromate film and corrosion product on the coating were examined which SEM/EDS. The chromate film formed preferentially at the convex sites rather than at the concave sites on the surface. The corrosion products were found at the concave sites where the chromate film formed rarely. The corrosion product on the coating were found at the concave sites where the chromate film formed rarely. The corrosion rates increased slightly with the surface roughness in accelerated corrosion test but significantly in field test.

  • PDF

Preliminary Corrosion Model in Isothermal Pb and LBE Flow Loops

  • Lee, Sung Ho;Cho, Choon Ho;Song, Tae Yung
    • Corrosion Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.201-205
    • /
    • 2006
  • HYPER(Hybrid Power Extraction Reactor) is the accelerator driven subcritical transmutation system developed by KAERI(Korea Atomic Research Institute). HYPER is designed to transmute long-lived transuranic actinides and fission products such as Tc-99 and I-129. Liquid lead-bismuth eutectic (LBE). Has been a primary candidate for coolant and spallation neutron target due to its appropriate thermal-physical and chemical properties, However, it is very corrosive to the common steels used in nuclear installations at high temperature. This corrosion problem is one of the main factors considered to set the upper limits of temperature and velocity of HYPER system. In this study, a parametric study for a corrosion model was performed. And a preliminary corrosion model was also developed to predict the corrosion rate in isothermal Pb and LBE flow loops.

Corrosion of Copper in Anoxic Ground Water in the Presence of SRB

  • Carpen, L.;Rajala, P.;Bomberg, M.
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.147-153
    • /
    • 2018
  • Copper is used in various applications in environments favoring and enabling formation of biofilms by naturally occurring microbes. Copper is also the chosen corrosion barrier for nuclear waste in Finland. The copper canisters should have lifetimes of 100,000 years. Copper is commonly considered to be resistant to corrosion in oxygen-free water. This is an important argument for using copper as a corrosion protection in the planned canisters for spent nuclear-fuel encapsulation. However, microbial biofilm formation on metal surfaces can increase corrosion in various conditions and provide conditions where corrosion would not otherwise occur. Microbes can alter pH and redox potential, excrete corrosion-inducing metabolites, directly or indirectly reduce or oxidize the corrosion products, and form biofilms that create corrosive microenvironments. Microbial metabolites are known to initiate, facilitate, or accelerate general or localized corrosion, galvanic corrosion, and intergranular corrosion, as well as enable stress-corrosion cracking. Sulfate-reducing bacteria (SRB) are present in the repository environment. Sulfide is known to be a corrosive agent for copper. Here we show results from corrosion of copper in anoxic simulated ground water in the presence of SRB enriched from the planned disposal site.

Atmospheric Corrosion Behavior of Carbon Steel by the Outdoor Exposure Test for 10 Years in Korea

  • Yoo, Y.R.;Choi, S.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.184-199
    • /
    • 2022
  • Steel was exposed in an atmospheric environment, and atmospheric environmental factors that include chloride, humidity, SO2, NO2 etc. induced the corrosion of steel. Corrosivity categories classified by SO2 and chloride deposition rate were low, but those classified by TOW were high in the Korean Peninsula, and on these environmental categories, the corrosivity of atmospheres classified by corrosion rate in carbon steel was low medium, C2-C3, and medium, C3 for zinc, copper, and aluminum. This work performed the outdoor exposure test for 10 years at 14 areas in Korea and calculated the atmospheric corrosion rate of carbon steel. The atmospheric corrosion behavior of carbon steel is discussed based on the various corrosion factors. When the corrosion product forms on carbon steel by atmospheric corrosion, cracks may also be formed, and through these cracks, the environmental factors can penetrate into the interior of the product, detach some of the corrosion products and finally corrode locally. Thus, the maximum corrosion rate was about 7.3 times greater than the average corrosion rate. The color difference and glossiness of carbon steel by the 10 year-outdoor exposure tests are discussed based on the corrosion rate and the environmental factors.

Integrated characterization of the corrosion products of Mg alloy (마그네슘 합금 부식 산화물에 대한 특성 연구)

  • Gwon, Sang-Jun;Heo, Jin-Yeong;Lee, Hong-Gi
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.179-180
    • /
    • 2015
  • pure Mg and some Mg alloys are relatively rapidly corroded after operation, resulting in the decrease of mechanical strength and change of local ion concentration. In this study, the corrosion mechanism of biodegradable implant materials was investigated by corrosion tests of the Mg alloy in Hank's solution. Particularly, the crystal structures and chemical bonding state of corrosion reactants was systematically examined.

  • PDF