• Title/Summary/Keyword: Corrosion of steel sleeve

Search Result 17, Processing Time 0.027 seconds

Development of a Remote Inspection Method and Device for Line Sleeves on Transmission Line (송전선로 직선슬리브 원격점검 방법 및 장치)

  • Lee, Jae-Kyung;Jung, Nam-Joon;Kim, Ho-Ki;Kim, Kyeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.206-213
    • /
    • 2011
  • Line sleeves, which used to connect ACSR cables when transmission lines were constructing, sometimes cause power transmission failure due to deterioration and corrosion. Therefore, power transmission line should be inspected regularly to prevent national disaster. Current inspection tool detects insertion length of transmission line on line sleeves, the inspection tool includes enormous error by operator. Moreover, the system is not controlled remotely, negligent accident would be caused while inspecting. To deal with those problems, KEPCO reviewed several ways to inspect line sleeves and proposes new method to inspect line sleeve by measuring magnetic flex which penetrate junction of steel and aluminum sleeve. The developed inspection tool is reliable enough to detect eccentric sleeves. Also, the developed inspection device was applied on actual transmission line and verified its effectiveness.

Case Study of Non-Metallic Repair Systems for Metallic Piping

  • Hammad, Bakr. S.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.6-12
    • /
    • 2008
  • Non-metallic composite overwrap repair methods utilize resin based fiber-reinforced composite materials, which have higher specific strength to weight ratio and stiffness, superior corrosion and fatigue resistance, and substantially reduced weight when compared to carbon steel. Non-metallic repair methods/systems can allow desired functional properties to be achieved at a respectable economic advantage. For example, non-metallic composite repair systems have at least a 50 year design stress of 20 ksi and approximately 25% of the short term tensile strength of fiberglass. For these systems, the contribution of the repaired steel to the load carrying capability need not be considered, as the strength of the repair itself is sufficient to carry the internal pressure. Worldwide experience in the Oil & Gas industry confirms the integrity, durability, inherent permanency, and cost-effectiveness of non-metallic composite repair or rehabilitation systems. A case study of a recent application of a composite repair system in Saudi Aramco resulted in savings of 37% for offshore subsea line and 75% for onshore above grade pipeline job. Maintaining a pipeline can be costly but it is very small in comparison to the cost of a failure. Pipeline proponents must balance maintenance costs with pipeline integrity. The purpose is not just to save money but also to attain a level of safety that is acceptable. This technology involves the use of an epoxy polymer resin based, fiber-reinforced composite sleeve system for rehabilitation and /or repair pipelines.

The Study on Mechanical and Thermal Properties of ACSR 480Rail Conductor with Various Defects (시공유형에 따른 ACSR 480Rail 가공송전선 접속개소의 기계적 및 열적 특성 연구)

  • Ahn, Sang-Hyun;Kim, Byong-Geol;Kim, Sang-Su;Sohn, Hong-Kwan;Park, In-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1297_1298
    • /
    • 2009
  • According to previous report, aged sleeves for old transmission lines have various defect such as biased installation or corrosion of steel sleeve. These defects occupied almost 50 percent of investigated aged sleeves. These defects can cause serious accidents such as rapid increasing of sag or falling out of overhead conductor from sleeves. Moreover, the defects have been limited power capacity of transmission line. This paper study on thermal behavior of ACSR 480Rail conductor and sleeve with various defect model. The detailed results were presented in the text.

  • PDF

The Study on Aged Sleeves for Old Transmission Lines (정상시공된 가공송전선 접속개소에서의 전류에 따른 온도변화 거동)

  • Kim, Byung-Geol;Kim, Shang-Shu;Ahn, Sang-Hyun;Sohn, Hong-Kwan;Park, In-Pyo;Lee, Dong-Il;Jang, Tae-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.518-519
    • /
    • 2007
  • In this paper, the temperature distribution within ACSR conductor was precisely measured and examined, conducted as part of a serious of studies on large currents in transmission lines. According to measurements of the conductor temperature near a joint(sleeve and clamp), the electrical resistance of joint is lower than that of the same length conductor. The detailed results were presented in the text.

  • PDF

Finite Element Analysis of Copper Clad Steel Wire Drawing Process (동피복 강 선재 인발 공정의 유한요소해석)

  • Kim H. S.;Kim B. M.;Jo H. H.;Jo H.
    • Transactions of Materials Processing
    • /
    • v.14 no.2 s.74
    • /
    • pp.147-152
    • /
    • 2005
  • The objective of this study is to develop an optimal drawing die for the clad wire drawing process. Cu-clad wire, which has the advantages of the high strength of a steel core and the electro-conductivity, corrosion resistance of a copper layer, is widely being used in the field of the telecommunications, electric-electronic and military technology industries. It is important to obtain uniformly coated rate when producing clad wires. Drawing process of clad wire will be influenced on damage and coated rate of core and sleeve for process variables such as semi-die angle and reduction in area. Therefore, in this study, the finite-element result obtained in this study was analyzed to the effect of the various forming parameters, which included the semi-die angle and reduction in area. The coated rate will be predicted with observation of copper coated rate variation according to total reduction in area and the optimal pass schedule will be set up through proper reduction in area and semi-die angle variation.

Analysis of Copper clad steel wire in the drawing process using FE method (유한요소 해석을 이용한 동피복 복합선재의 인발 공정 해석)

  • Kim H.S.;Jo H.;Jo H. H.;Kim D.K.;Kim B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.27-30
    • /
    • 2004
  • Clad wire , which has the advantages of the high strength of a steel core and the electro-conductivity, corrosion resistance of a copper layer, is widely being used the telecommunications, electric-electronic and military technology industries, among others. It is important to obtain uniform coated rate when producing clad wires. Clad wire drawing process can be influenced on damage and coated rate of core and sleeve by process variables as semi-die angle and reduction in area. Therefore, in this study, the finite-element results established in previous study is used to analyze the effect of the various forming parameters, which included the semi-die angle, reduction in area etc. The coated rate will be predicted with observation copper coated rate variation according to total reduction in area and the optimal pass schedule will be set up through proper reduction in area and semi-die angle variation.

  • PDF

An Experimental Study on the Performance of Compression-Type Anchor for CFRP Tendons (CFRP 긴장재용 압착형 정착장치의 정착성능에 관한 실험적 연구)

  • Jung, Woo-Tai;Lee, Seung-Joo;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.611-618
    • /
    • 2008
  • CFRP (carbon fiber reinforced polymer) tendons can be used as an alternative to solve the corrosion problem of steel tendons. Since CFRP tendons are vulnerable to transverse pressure and stress concentration, the conventional anchorage system used for steel tendons can create an unreliable load carrying capacity and may result in a premature failure. Therefore, it is necessary to develop the anchorage system that is well suited for CFRP tendons. There are many types of anchorage systems for CFRP tendons, which can be classified into three types: wedge-type anchorage, bond-type anchorage, and compression-type anchorage. This paper deals with the compression-type anchorage system manufactured through swaging technology. Based on the previous test results performed by the authors, the dimension of anchorage sleeve, the use and non-use of the insert, and the compression pressure on the sleeve have been selected as the major parameters affecting the performance of the compression-type anchorage. Some anchorage sleeves have been tapered to reduce the stress concentration. Test results revealed that the performance of the anchorage system depends mainly on the dimension and the compression pressure. It has been verified that the tapered sleeve can effectively reduce the stress concentration.