• Title/Summary/Keyword: Corrosion mechanism

Search Result 403, Processing Time 0.026 seconds

Discharge Properties of Sodium-sulfur Batteries at Room Temperature (상온용 나트륨/유황전지의 방전 특성)

  • Kim, T.B.;Ahn, H.Y.;Hur, H.Y.
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.193-197
    • /
    • 2006
  • The sodium/sulfur(Na/S) battery has many advantages such as high theoretical specific energy(760Wh/kg), and low material cost based on the abundance of electrode material in the earth. It has been reported that the electrochemical properties of sodium/sulfur cell above $300^{\circ}C$, utilized a solid ceramic electrolyte and liquid sodium and sulfur electrodes. A lot of researches have been performed in this field. Recently, Na/S battery system was applied for electricity storage system for load-leveling. One of severe problems of sodium/sulfur battery was high operating temperature above $300^{\circ}C$, which could induce the explosion and corrosion by molten sodium, sulfur and polysulfides. In order to develop sodium battery operated at low temperature, sodium ion battery has been studied using carbon anode, and sodium oxides cathodes. However, the energy densities of the sodium ion batteries were much lower than high temperature sodium/sulfur cell. In this study, the sodium/sulfur battery with 1M $NaCF_3SO_3$ is tested at room temperature. The charge-discharge mechanism was discussed based on XRD, DSC, SEM and EDS results.

Performances of Metallic (sole, composite) and Non-Metallic Anodes to Harness Power in Sediment Microbial Fuel Cells

  • Haque, Niamul;Cho, Daechul;Kwon, Sunghyun
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.363-367
    • /
    • 2014
  • One chambered sediment microbial fuel cell (SMFC) was equipped with Fe, brass (Cu/Zn), Fe/Zn, Cu, Cu/carbon cloth and graphite felt anode. Graphite felt was used as common cathode. The SMFC was membrane-less and mediator-less as well. Order of anodic performance on the basis of power density was Fe/Zn ($6.90Wm^{-2}$) > Fe ($6.03Wm^{-2}$) > Cu/carbon cloth ($2.13Wm^{-2}$) > Cu ($1.13Wm^{-2}$) > brass ($Cu/Zn=0.24Wm^{-2}$) > graphite felt ($0.10Wm^{-2}$). Fe/Zn composite anode have twisted 6.73% more power than Fe alone, Cu/carbon cloth boosted power production by 65%, and brass (Cu/Zn) produced 65% less power than Cu alone. Graphite felt have shown the lowest electricity generation because of its poor galvanic potential. The estuarine sediment served as supplier of oxidants or electron producing microbial flora, which evoked electrons via a complicated direct microbial electron transfer mechanism or making biofilm, respectively. Oxidation reduction was kept to be stationary over time except at the very initial period (mostly for sediment positioning) at anodes. Based on these findings, cost effective and efficient anodic material can be suggested for better SMFC configurations and stimulate towards practical value and application.

The Study on the AC Interference of High Power Cable on Underground Gas Pipeline (전력케이블과 가스배관의 병행구간에 대한 교류부식 영향 검토 연구)

  • Bae, J.H.;Kim, D.K.;Ha, T.H.;Lee, H.G.;Kwak, B.M.;Lim, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.470-473
    • /
    • 2000
  • Because of the continuous growth of energy consumption, and also the tendency to site power lines and pipelines along the same routes, the close proximity of high voltage structures and metallic pipelines has become more and more frequent. Moreover, normal steady state and fault currents become higher as electric networks increase in size and power. Therefore, there has been and still is a growing concern (safety of people marking contact with pipeline, risk of damage to the pipeline coating, the metal and equipment connected to pipeline. especially cathodic protection system) about possible hazards resulting from the influence of high voltage power system on metallic structures(gas pipeline, oil pipeline and water pipeline etc.). Therefore, we analyze the interference problems when the gas pipeline is buried with power cable in the same submarine tunnel. This paper present the results of the study about interference mechanism, AC corrosion, limitation of safety voltage and analysis of indiction voltage.

  • PDF

Wear Behavior of WC-12%Co/Low Carbon Steel Metal Matrix Composites(MMC) Welding Overlay (WC-12%Co/저탄소강 MMC 용접 오버레이의 마모거동)

  • 임희식;김태형;박경채
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.42-49
    • /
    • 2003
  • The protection of steel surfaces against wear is a practical problem far agricultural, mining and manufacturing industries. Commercial processes are available in which a hard tungsten carbides rich steel layer is formed on the surface of carbon steel digging, drilling and gouging tools to improve their wear resistance. The nature of the interaction of the tungsten carbide with the steel matrix is important in determining the wear and corrosion properties of the resulting metal matrix composites(MMC). In the study, WC-12%Co/low carbon steel MMC overlays have been prepared by gas metal arc welding(GMAW) according to size of WC-12%Co grits. The characteristics wear resistance and wear mechanism have been investigated in relation to the experiment conditions each other. After MMC overlay had been tested by rubber wheel abrasion test, it was known that MMC overlay has a excellent wear resistance. Fe$_{6}$W$_{6}$C carbides of matrix in overlays were not important to restrain rubber wheal abrasion wear. Wear loss is proportioned to a applied load according to time. On the case of low load, wear occurred severely in the matrix of overlay more than WC-12%Co grit, on the contrary it is reverse on the case of high load because of fracture of WC-12%Co grits.its.

Effect of Sn Addition on the SCC Properties of Al-Cu-Mn Cast Alloy (Al-Cu-Mn 주조합금의 SCC 특성에 미치는 Sn 첨가의 영향)

  • Kim, Kwang-Nyeon;Kim, Kyung-Hyun;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.436-441
    • /
    • 2002
  • Effect of Sn addition on the stress corrosion cracking(SCC) resistance of the Al-Cu-Mn cast alley was investigated by C-ring teat and electrical conductivity measurement, The electrical conductivity and SCC resistance increased by Sn addition. The alley containing 0,10%Sn showed maximum electrical conductivity and the best SCC resistance. At the same composition, the electrical conductivity and SCC resistance increased from peak aged condition to ever aged condition. The PFZ and coarse precipitates along the grain boundary were observed from TEM micrographs. The fracture mode of the alloy was confirmed as intergranular type and showed brittle fracture surface. The SCC mechanism of the alloy was concluded as the anodic dissolution model, The maximum hardness was increased from 130Hv in the Sn-free alloy to 156Hv in the 0.10%Sn added alloy.

Preparation and Properties of ρ-alumina Bonded Alumina Vibrated Castable Refractory (진동성형용 ρ-알루미나결합 알루미나 캐스터블 내화재료의 제조와 특성)

  • 천승호;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.791-797
    • /
    • 2003
  • The special binding mechanism developed provides higher density, lower porosity and higher strengths compared with conventional castables. $\rho$-alumina was employed as a binder materials and nano-sized clay colloidal was added to enhance the drying strength preparing for the alumina vibrated castable. Lower water requirement for casting results in a denser product. The mechanical properties with dimensional stability and corrosion resistance behaviors have been improved by controlling the matrix compositions of the castable. The modulus of rupture and compressive strength after heat treatment at 150$0^{\circ}C$ are 92.34 kgf/$\textrm{cm}^2$ and 370 kgf/$\textrm{cm}^2$ respectively. The activation energy of mullite formation is 11.47 kcal/mol.

Sliding Contact Analysis between Chromium Plated Hydraulic Cylinder Rod and Seals (크롬 도금한 유압 실린더 로드와 시일 사이의 미끄럼접촉 해석)

  • Park, Tae Jo;Kim, Min Gyu
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.10-15
    • /
    • 2018
  • The hydraulic cylinder seals are used not only to protect leakage of the working fluids but also to prevent incoming of foreign particles into the system. Chromium plating is generally applied to improve corrosion and wear resistance. It has been noticed that sealing surface damage occurs due to the hard foreign/wear particles contained in the hydraulic oil. In this study, a three-bodied sliding contact problem related with a PTFE seal, a spherical particle and chrome-plated steel substrate is modeled to investigate the relations to wear mechanism. Using the nonlinear finite element software, MARC/MENTAT, the deformed shapes, the von Mises and first principal stress distributions with plating thickness were compared. The sealing surface was mainly abraded by hard particles embedded in the seal. The plastic deformation of the steel substrate decreased with thicker plating. Hence it could be more effective to coat the sealing surface of a hydraulic cylinder with a hard material such as TiN, TiC and DLC.

Study on the Wear Mechanism of the Plasma Spray Coatings (용사층의 마모 기구에 관한 연구)

  • Yun, U-Saeng;Song, Yo-Seung;Byeon, Eung-Seon;Lee, Gu-Hyeon;No, Byeong-Ho
    • 연구논문집
    • /
    • s.25
    • /
    • pp.193-205
    • /
    • 1995
  • Plasma spray coating technology is essential for the microsemiconductor processes based on the electronic and computer industry, and extend gradually the range of application for up-to-date industry such as diesel engine and gas turbine components. These thechonoogies may be applied to the components requiring wear-resistance, heat resistance, fatigue-resistance, and corrosion-resistance. In this research, plasma spray technology was selected for the wear resistant coatings as the most proper technique. The final goal of this study is to improve the wear resistance through establishment of coating soft-ware, and basic research for industrialization of the technology concerned.

  • PDF

Effect of Cd Addition on the SCC Properties of Al-Cu-Mn Cast Alloys (Al-Cu-Mn주조합금의 SCC특성에 미치는 Cd첨가의 영향)

  • Lee, Chan-Hui;Kim, Gyeong-Hyeon;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.266-271
    • /
    • 2001
  • Effect of Cd addition on the stress corrosion cracking(SCC) resistance of Al-Cu-Mn cast alloy was investigated by C-ring test and electrical conductivity measurement. With increasing Cd contents, the electrical conductivity and the SCC resistance were increased. The PFZ and coarse precipitates along the grain boundary were observed from TEM micrographs. The fracture made of the alloys was confirmed as intergranular type and showed brittle fracture surface. As a result, it was concluded that the SCC mechanism of these alloys is the anodic dissolution model. The maximum hardness was increased from 127Hv in the Cd-free alloy to 138∼145Hv in the Cd addition alloys.

  • PDF

Labyrinth Seal Design for Preventing Internal Inflow of Plating Solution (도금액의 내부 유입 방지를 위한 래버린스 시일 설계)

  • Lee, Duck-Gyu;Kim, Wan-Doo
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.256-262
    • /
    • 2017
  • Molten zinc plating is a process in which zinc is thinly coated over a metallic or non-metallic surface. It is used in various industrial fields for corrosion resistance and decoration. During the process, a steel sheet is passed through a roll that rotates inside the molten zinc liquid in the temperature range of $460^{\circ}C$ to $680^{\circ}C$, and the plating liquid flows into the roll causing abrasion and erosion of the roll surface. This problem is known to accelerate the replacement cycle of the roll and cause considerable economic loss owing to production line stoppage. Here, we propose a mechanism that operates at high temperature and pressure with a labyrinth type seal design to resolve this problem. We theoretically investigate the flow of the plating solution inside the seal and compute the minimum rotation speed required to prevent the plating solution from entering the seal chamber. In addition, we calculate the thermal deformation of the seal during operation and display thermally deformed dimensions at high temperatures. To verify the theoretical results, we perform experiments using pilot test equipment working in the actual plating environment. The experimental results are in good agreement with theoretical results. We expect our results to contribute towards the extension of the roll's life span and thereby reduce the economic losses.