• 제목/요약/키워드: Corrosion inhibition effect

검색결과 81건 처리시간 0.019초

Corrosion Inhibition of Aluminium using 3-Hydroxy flavone in the Presence of Quarternary Ammonium Salts in NaOH Medium

  • Princey, J. Morris;Nagarajan, Prabavathi
    • 대한화학회지
    • /
    • 제56권2호
    • /
    • pp.201-206
    • /
    • 2012
  • The anticorrosive effect of 3-Hydroxyflavone (3HF) in combination with quarternary ammonium bromide and iodide salts (QAB and QAI) for aluminium corrosion in NaOH medium was studied at the temperature range of 303K-323K using weight loss study, potentiodynamic polarization study and impedance spectroscopic measurements. The results revealed that the inhibition efficiency increases with the inhibitor concentration and it further increases on the addition of quarternary ammonium bromide and iodide salts. The enhanced inhibition efficiency of the inhibitor in the presence of quarternary ammonium salts may be due to synergistic effect. The adsorption process of 3HF on the aluminium surface obeys Langmuir's adsorption isotherm. The mechanism of adsorption is further supported by Scanning Electron Microscopic study (SEM).

Effect of Dynamic Flow on the Structure of Inhibition Layer in Hot-dip Galvanizing

  • Jin, Young Sool;Kim, Myung Soo;Kim, Su Young;Paik, Doo Jin
    • Corrosion Science and Technology
    • /
    • 제10권1호
    • /
    • pp.30-36
    • /
    • 2011
  • The effect of dynamic flow or forced convection were investigated and compared on the formation of inhibition layer, galvanizing and galvannealing reactions through the hot-dip galvanizing simulator with the oscillation of specimen in zinc bath, continuous galvanizing pilot plant with zinc pumping system through the snout and continuous galvanizing operation with Dynamic $Galvanizing^{TR}$ system. The interfacial Al pick-up was not consistent between the results of simulator, pilot plant and line operation, but the morphology of inhibition layer became compact and refined by the forced convection. The growth of Fe-Zn intermetallics at the interface was inhibited by the forced convection, whereas the galvannealing rate would be a little promoted.

Characterization of the Galvanizing Behavior Depending on Annealing Dew Point and Chemical Composition in Dual-Phase Steels

  • Shin, K.S.;Park, S.H.;Jeon, S.H.;Bae, D.C.;Choi, Y.M.
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.247-253
    • /
    • 2010
  • The characteristics of selective oxidation prior to hot-dip galvanizing with the annealing atmosphere dew point and chemical composition in dual-phase steels and their effect on the inhibition layer formation relevant to coating adhesion have been studied using a combination of electron microscopic and surface analytical techniques. The annealed and also galvanized samples of 3 kinds of Si/Mn ratios with varied amounts of Si addition were prepared by galvanizing simulator. The dew point was controlled at soaking temperature $800^{\circ}C$ in 15%$H_2$ -85%$N_2$ atmosphere. It was shown that good adhesion factors were mainly uniformity of oxide particle distribution of low number density and low Si/Mn ratio prior to hot-dip galvanizing. Their effect was the greatly reduced coating bare spots and the formation of uniform inhibition layer leading to good adhesion of Zn overlay. The mechanism of good adhesion is suggested by two processes: the formation of inhibition layer on the oxide free surface uncovered with no $SiO_2$-containing particles in particular, and the inhibition layer bridging of oxide particles. The growth of inhibition layer was enhanced markedly by the delayed reaction of Fe and Al with the increase of Si/Mn ratio.

알루미늄 부식에 대한 베타-차단제 억제제 효과 (Effect of β-Blocker Inhibitors on Aluminum Corrosion)

  • Fouda, A. S.;El-Ewady, G. Y.;Shalabi, K.
    • 대한화학회지
    • /
    • 제55권2호
    • /
    • pp.268-278
    • /
    • 2011
  • 베타 차단제 억제제(atenolol, propranolol, timolol and nadolol)의 존재와 부존 하에서 0.1M HCl 용액에 담긴 알루미늄의 부식작용을 연구하였다. 이 연구에 무게감량, 변전위 편극, 전기화학 임피던스 분석법이 사용되었다. 억제 효과는 억제제의 농도 증가에 따라 증가하였으며, 온도가 증가함에 따라 감소하였다. 모든 억제제들은 Frumkin 등온을 따르는 알루미늄 표면에 흡착되었다. 부식반응은 전하이동과정에 의해 조절됨을 발견하였다. 억제 효과 측정을 위해 사용된 실험방법 들에 대해 조사한 결과 모두 억제효과가 우수하였다.

아연 이온화 장치에 의한 상수배관 내 스케일 및 녹 생성 억제효과 실증 연구 (Empirical study on inhibition effect of scale and rust in tap-water line by zinc ionization device)

  • 염경택;최정욱;양성봉;심학섭;유미선
    • 상하수도학회지
    • /
    • 제35권6호
    • /
    • pp.465-476
    • /
    • 2021
  • Scale and rust generation in water pipes is a common phenomenon when cast iron water pipes have been used for a long time. A physical water treatment device is known among various means for suppressing rust in a water pipe, and a zinc ionization device for putting zinc metal into a pipe and emitting the zinc cation into water is one of such devices. This research measured the amount of zinc ion generated, which is known to exhibit an effect of inhibiting rust and scale generation in a pipe, and examined the scale and rust inhibition effect of the ionization device installed for ground or building water supply. In the case of distilled water, the concentration of zinc ion increased by circulating water in the ionization device several times, and it was verified to be hundreds of ㎍/L, and in the case of discharging ground or tap water, it was verified to be tens of ㎍/L. In addition, a verification pipe was installed to confirm the change inside the pipe before and after installation of the zinc ionization device, and the internal condition of the pipe was observed 3 months to several years after installation. It was confirmed that the corrosion area of the surface of the pipe was no longer increased by installing a corrosion inhibitor, and if the pipe was already filled with corrosion products, the amount of corrosion products gradually decreased every year after installation. The phenomenon of fewer corrosion products could be interpreted as expanding the space in the pipe due to the corrosion product as Fe2O3 adhered to the inner surface of the pipe and turned into a smaller black Fe3O4. In addition, we found that scale such as CaCO3 together in the corrosion by-products gradually decreased with the attachment of the ionization device.

염화물 오염 콘크리트 공극 용액에서 철근의 부식 억제에 대한 혼합 억제제의 효과 (Effect of Mixed Inhibitor on Corrosion Inhibition of Steel Rebar in Chloride Contaminated Concrete Pore Solution)

  • 소우멘 만달;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.32-33
    • /
    • 2021
  • The corrosion of the embedded steel rebars and the consequent deterioration of the reinforced concrete structure has become a challenging concern to the construction industries for the fiscal deficit. However, corrosion inhibitors are potential and being widely used for corrosion mitigation to solve such problems. This study has been focused on the mixed type of corrosion inhibitor where one component of the corrosion inhibitor is organic and another one is inorganic material. 0.1 (M) triethanolamine (TEA) and 0.01 (M) sodium hexametaphosphate (SHMP) have been mixed in distilled water to produce the mixed inhibitor. Studies of the steel rebar corrosion in chloride contaminated (3.5 wt.% NaCl) concrete pore (CCCP) solution has been conducted using different concentrations of corrosion inhibitor. Electrochemical impedance spectroscopy (EIS) method is involved to understand the corrosion behaviour of the steel rebars at different exposure durations.

  • PDF

The Effect of Corrosion Inhibitor on Corrosion Control of Copper Pipe and Green Water Problem

  • Lee, Ji-Eun;Lee, Hyun-Dong;Kim, Gi-Eun
    • Environmental Engineering Research
    • /
    • 제17권1호
    • /
    • pp.17-25
    • /
    • 2012
  • Concern about green water problem has surfaced as a serious issue in Korea. In order to solve this problem, it is necessary to research inhibition of green water and corrosion control of copper pipe in water service. This paper discovered that moderate corrosion inhibitors can solve the green water problem and copper corrosion in water service by adding the optimal concentration of corrosion inhibitors based on regulation. Firstly, in the case of phosphate based corrosion inhibitors, as dosage of the corrosion inhibitor increases from 1 mg/L to 5 mg/L, the relative effect of corrosion inhibitor declines rapidly. Secondly, except for 1 mg/L dosage of silicate based inhibitor, relative effects of the inhibitor displays a positive number depending on inhibitor concentration. The most significant result is that the amount of copper release shows a downward trend, whereas the phosphate based inhibitor accelerates copper ion release as the inhibitor dosage increases. Thirdly, as the dosage of mixed inhibitors increases to 10 mg/L, the copper release change shows a similar trend of phosphate based inhibitor. Lastly, according to the Langelier saturation index (LI), silicate based inhibitors have the most non corrosive value. Larson ratio (LR) indicates that phosphate based inhibitors are the least corrosive. Korea water index (KWI) represents that silicate based inhibitors are most effective in controlling copper pipe corrosion.

High-temperature electrochemical corrosion behavior of SA106 Grade B carbon steel with corrosion inhibitors in HyBRID solution

  • Sung-Wook Kim;Sang-Yoon Park;Chang-Hyun Roh;Sun-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2256-2262
    • /
    • 2023
  • The electrochemical corrosion behaviors of SA106 Grade B (SA106B) carbon steel in H2SO44-N2H4 and H2SO4-N2H4-CuSO4 solutions at 95 ℃ have been investigated with the addition of commercial corrosion inhibitors (CI#30 and No. 570S), to determine the stability of SA106B in the hydrazine-based reductive metal ion decontamination (HyBRID) process. The potentiodynamic polarization experiment revealed that the corrosion inhibitors were capable of lowering the corrosion rate of SA106B in H2SO4-N2H4 solution. It was found that the corrosion inhibitors induced formation of fixed surface layer on the carbon steel upon the corrosion. This corrosion inhibition performance was reduced in the presence of CuSO4 in the solution owing to the chemical reactions between organic compounds in the corrosion inhibitors and CuSO4. CI#30 showed a better corrosion inhibition effect in the H2SO4-N2H4-CuSO4 solution. Although the corrosion inhibitors can provide better stability to SA106B in the HyBRID solution, their application should be carefully considered because it may result in reduced decontamination performance and increased secondary waste generation.

시멘트 모르타르에 매립된 철근의 생태학적 부식방지제로서 폐기물 바이오매스의 적용 (Application of waste biomass as ecological corrosion inhibitors for steel rebar embedded in cement mortar)

  • 카르틱 수비아;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.111-112
    • /
    • 2022
  • In this present study, the corrosion mitigation effect of conifer cone extract (CC) was examined in the cement mortar to improve the steel rebar (SR) corrosion resistance. The corrosion inhibition properties of the SR embedded in cement mortar (CM) admixed with different percentage (0, 0.5, 1.0, 1.5, 2.0 %) of CC was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) tests. This result confirms that the CM with 0.5% of CC added has better corrosion resistance than the blank specimen (0 % of CC). Although, the percentage of CC increase above 0.5%, the CC could yield a negative impact on CM properties in terms of reducing the corrosion resistance due to the reduction of cement hydration reaction. It was highlighted that the SR embedded in CM containing 0.5% of CC had increased corrosion resistance.

  • PDF

Role of Some Phenylthiourea Derivatives as Corrosion Inhibitors for Carbon Steel in HCl Solution

  • Fouda, Abd El-Aziz El-Sayed;Hussein, Ahmed
    • 대한화학회지
    • /
    • 제56권2호
    • /
    • pp.264-273
    • /
    • 2012
  • Five derivatives of phenylthiourea namely: 1-(4-methoxyphenyl)-3-phenylthiourea (1), 1-(4-methylphenyl)-3- phenylthiourea (2), 1-(4-bromophenyl)-3-phenylthiourea (3), 1-(4-chlorophenyl)-3-phenylthiourea (4) and 1-phenylthiourea (5) have been evaluated as new inhibitors for the corrosion of carbon steel in 2 M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization measurements showed that these derivatives are mixed-type inhibitors. The inhibition efficiency was found to increase with inhibitor concentration and decreases with rise in temperature. The thermodynamic parameters of adsorption and activation were determined and discussed. Nyquist plots showed depressed semicircles with their centre below real axis. The adsorption process of studied derivatives on carbon steel surface obeys Temkin adsorption isotherm. The synergistic effect of these derivatives and some anions is discussed from the viewpoint of adsorption models. The electrochemical results are in good agreement with the calculated quantum chemical HOMO and LUMO energies of the tested molecules.