• Title/Summary/Keyword: Corrosion fatigue cracking

Search Result 70, Processing Time 0.024 seconds

Corrosion Fatigue Cracking of Low Alloy Steel in High Temperature Water

  • Lee, S.G.;Kim, I.S.;Jang, C.H.;Jeong, I.S.
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.93-97
    • /
    • 2003
  • Fatigue crack growth test or low alloy steel was performed in high temperature water. Test parameters were dissolved oxygen content. loading frequency and R-ratio ($P_{min}/P_{max}$). Since the sulfur content or the steel was low, there were no environmentally assisted cracks (EAC) in low dissolved oxygen(DO) water. At high DO, the crack growth rate at R = 0.5 tests was much increased due to environmental effects and the crack growth rate depended on loading frequency and maximized at a critical frequency. On the other hand, R = 0.7 test results showed an anomalous decrease of the crack growth rate as much different behavior from the R = 0.5. The main reason of the decrease may be related to the crack tip closure effect. All the data could be qualitatively understood by effects of oxide rupture and anion activity at crack tip.

Corrosion Failure Analysis of Condensate Pre-Heater in Heat Recovery Steam Generator (배열회수보일러 복수예열기 부식 파손 분석)

  • Chae, Hobyung;Kim, Woo Cheol;Kim, Heesan;Kim, Jung-Gu;Kim, Kyung Min;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.69-76
    • /
    • 2021
  • In this work, we have performed a corrosion failure analysis of a leaking tube connected to an upper header of a condensate pre-heater in a heat recovery steam generator. It was revealed that the leakage position in the tube was the location where the materials were easily vulnerable due to tensile residual stresses induced by the material manufacturing process and welding process. In addition to an imbalance in the module induced by temperature difference during operation of the pre-heater, the weight of the modules and thermal fatigue provoked a type of stress of tensile-tensile fatigue on the tube. Thus, the leakage position of the pre-heater was exposed to the tensile stress on the inner surface of the tube facing the gas, which rendered the unstable oxide layer susceptible to corrosion and the formation of pits on the water side. The cracks propagated along with the degraded microstructure in a transgranular cracking mode under fatigue loading and finally resulted in water leakage.

Development of the Condition Assessment Scheme of Aged Ships (노후선박의 Condition Assessment Scheme의 개발)

  • 박영일;백점기;이제명;고재용
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.77-82
    • /
    • 2004
  • This study presents reliability assessment of merchant ships with focus on hull girder ultimate limit state, taking into account the time-dependent effects of corrosion, fatigue cracking and local denting. Some considerations for establishing a reliability-based repair and maintenance scheme are also made so as to keep a ship's hull girder strength reliability at an acceptable level even later in life.

  • PDF

A fracture criterion for high-strength steel cracked bars

  • Toribio, J.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.209-221
    • /
    • 2002
  • In this paper a fracture criterion is proposed for cracked cylindrical samples of high-strength prestressing steels of different yield strength. The surface crack is assumed to be semi-elliptical, a geometry very adequate to model sharp defects produced by any subcritical mechanism of cracking: mechanical fatigue, stress-corrosion cracking, hydrogen embrittlement or corrosion fatigue. Two fracture criteria with different meanings are considered: a global (energetic) criterion based on the energy release rate G, and a local (stress) criterion based on the stress intensity factor $K_I$. The advantages and disadvantages of both criteria for engineering design are discussed in this paper on the basis of many experimental results of fracture tests on cracked wires of high-strength prestressing steels of different yield strength and with different degrees of strength anisotropy.

Bayesian model updating for the corrosion fatigue crack growth rate of Ni-base alloy X-750

  • Yoon, Jae Young;Lee, Tae Hyun;Ryu, Kyung Ha;Kim, Yong Jin;Kim, Sung Hyun;Park, Jong Won
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.304-313
    • /
    • 2021
  • Nickel base Alloy X-750, which is used as fastener parts in light-water reactor (LWR), has experienced many failures by environmentally assisted cracking (EAC). In order to improve the reliability of passive components for nuclear power plants (NPP's), it is necessary to study the failure mechanism and to predict crack growth behavior by developing a probabilistic failure model. In this study, The Bayesian inference was employed to reduce the uncertainties contained in EAC modeling parameters that have been established from experiments with Alloy X-750. Corrosion fatigue crack growth rate model (FCGR) was developed by fitting into Paris' Law of measured data from the several fatigue tests conducted either in constant load or constant ΔK mode. These parameters characterizing the corrosion fatigue crack growth behavior of X-750 were successfully updated to reduce the uncertainty in the model by using the Bayesian inference method. It is demonstrated that probabilistic failure models for passive components can be developed by updating a laboratory model with field-inspection data, when crack growth rates (CGRs) are low and multiple inspections can be made prior to the component failure.

Sensitivity Analyses of Failure Probability of Pipes in Nuclear Power Plants using PRO-LOCA (PRO-LOCA를 이용한 원전 배관의 파손확률에 대한 민감도 해석)

  • Cho, Young Ki;Kim, Sun Hye;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.136-142
    • /
    • 2014
  • Recently a new version of PRO-LOCA program was released. Using the program, failure probability of pipes can be evaluated considering fatigue and/or stress corrosion crack growth and the effects of various parameters on the integrity of pipes in nuclear power plants can be evaluated quantitatively. The analysis results can be used to establish an inspection plan and to examine the effects of important parameters in a maintenance plan. In this study, sensitivity analyses were performed using the program for several important parameters including sampling method, initial crack size, number of initial fabrication flaws, operation temperature, inspection interval, operation temperature and nominal applied bending stress. The effect of parameters on the leak and rupture probability of pipes was evaluated due to fatigue or stress corrosion crack growth.

A Study on the Effect of Compressive Residual Stress for Corrosion Property of SUP-9 Steel Using as Suspension Material (현가장치재 SUP-9강의 부식특성에 미치는 압축잔류응력의 영향에 관한 연구)

  • Ru Hyung-Ju;An Jae-pil;Park Keyung-dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.930-937
    • /
    • 2005
  • One of the useful technology for light-weightening of components required in the automobile and machine industry is to use of high strength materials. To improve material properties, carbonizing treatment, nitrifying treatment, and shot-peening method are representatively applied, However, the shot-peening method is generally used to remove the surface defect of steel and to improve the fatigue strength on surface. Benefits by shot peening are to make increase resistance against fatigue, stress corrosion cracking, fretting, galling, erosion and closing of pores. In this paper, investigated the effect of shot peening on the corrosion of SUP-9 steel immersed in $3.5\%$ NaCl solution and corrosion characteristics by the heat treatment during shot peening process. The immersion test was performed on the four kinds of specimens. Corrosion potential, polarization curve, residual stress and etc. were investigated from the experimental results.

Environmentally-Assisted Cracking of Austenitic Alloys in a PWR Environment (PWR 환경에서의 오스테나이트계 합금의 환경조장균열)

  • Hong, Jong-Dae;Jang, Hun;Jang, Changheui
    • CORROSION AND PROTECTION
    • /
    • v.12 no.1
    • /
    • pp.30-38
    • /
    • 2013
  • Austenitic stainless steels and Ni-base alloys are widely used as structural materials for major components and piping system in pressurized water reactors (PWRs). These austenitic alloys are known to be susceptible to environmental assisted cracking (EAC), such as environmentally-assisted fatigue (EAF) and primary water stress corrosion cracking (PWSCC) during long-term exposure to PWR primary water environment. In this paper, the current understanding on the phenomena and mechanisms of these EAC are briefly introduced using experimental results and literature review. The mechanisms for EAF and PWSCC for austenitic stainless steels and Ni-base alloys are discussed. Currently, austenitic stainless steels are known to be more susceptible to EAF, while less susceptible to PWSCC than Ni-base alloys. The possible explanations to such behaviors are proposed and discussed in view of the role of hydrogen and internal oxidation.

Development of Assessment System for Pipeline Integrity (매설배관의 건전성 평가 시스템 개발)

  • 이억섭;윤해룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.158-165
    • /
    • 2003
  • The object of this work is to develop an assessment system for pipeline integrity. The internal algorithm and the database of the system are described in this paper. The system consists of four module applications; the effect of corrosion in pipeline, crack, SCC (stress corrosion cracking) and fatigue module. The database of the system is separated to mainly four parts; geometry of pipeline, material properties, boundary condition and general properties. This system may give a guideline for maintenance and modifications.

Fatigue Characteristics and Compressive Residual Stress of Shot Peened Alloy 600 Under High Temperature (쇼트피닝 가공된 Alloy 600 재료의 고온환경하에서의 잔류응력 및 피로특성)

  • Kim, Jong Cheon;Cho, Hong Seok;Cheong, Seong Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.333-338
    • /
    • 2013
  • The compressive residual stress and fatigue behavior of shot peened alloy 600 under a high-temperature environment is investigated in this study. Alloy 600 is used in the main parts of nuclear power plants, and the compressive residual stress induced by the shot peening process is considered to prevent SCC (stress corrosion cracking). To obtain practical results, the fatigue characteristics and compressive residual stress are evaluated under the actual operating temperature of a domestic nuclear power plant, as well as a high-temperature environment. The experimental results show that the peening effects are valid at a high temperature lower than approximately $538^{\circ}C$, which is the threshold temperature. The fatigue life was maintained at temperatures lower than $538^{\circ}C$, and the compressive residual stress at $538^{\circ}C$ was 68.2% of that at room temperature. The present results are expected to be used to obtain basic safety and reliability data.