• Title/Summary/Keyword: Corrosion density

Search Result 739, Processing Time 0.034 seconds

Surface and Photolytic Characteristics of Ni-TiO2 Composite Layer Electro-Plated from Non-Aqueous Electrolyte (비수용액 전해질에서 전기도금한 니켈-TiO2 복합 도금층의 표면 및 광분해 특성 연구)

  • Jo, Il-Guk;Ji, Chang-Wook;Choi, Chul-Young;Kim, Young-Seok;Kim, Yang-Do
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.240-244
    • /
    • 2008
  • Composite plating is a method of co-deposition of plating layer with metallic and/or non-metallic particles to improve the plating layer properties such as high corrosion resistance and photolysis of organic compounds. The properties of nickel-ceramic composite plating are significantly depend on the surface characteristics of co-deposited particles as well as the quantity in electrolyte. In this study, Ni-$TiO_2$ composite coating layer was produced by electrodeposition technique from non-aqueous eletrolyte and its surface characteristics as well as photolytic properties were investigated. The amounts of immobilized $TiO_2$ particles increased with increasing the initial $TiO_2$ particles contents in the bath. Samples electroplated with the current density of $0.5\;A/dm^2$ showed the significantly improved homogeneous $TiO_2$ particles distribution. The corrosion resistance of Ni-$TiO_2$ composite coating layer also improved with increaing the amounts of $TiO_2$ particles. Etched sample showed about 10% increased photolytic rate of organic matter compare to that of the non-etched.

Performance of carbon fiber added to anodes of conductive cement-graphite pastes used in electrochemical chloride extraction in concretes

  • Pellegrini-Cervantes, M.J.;Barrios-Durstewitz, C.P.;Nunez-Jaquez, R.E.;Baldenebro-Lopez, F.J.;Corral-Higuera, R.;Arredondo-Rea, S.P.;Rodriguez-Rodriguez, M.;Llanes-Cardenas, O.;Beltran-Chacon, R.
    • Carbon letters
    • /
    • v.26
    • /
    • pp.18-24
    • /
    • 2018
  • Pollution of chloride ion-reinforced concrete can trigger active corrosion processes that reduce the useful life of structures. Multifunctional materials used as a counter-electrode by electrochemical techniques have been used to rehabilitate contaminated concrete. Cement-based pastes added to carbonaceous material, fibers or dust, have been used as an anode in the non-destructive Electrochemical Chloride Extraction (ECE) technique. We studied the performance of the addition of Carbon Fiber (CF) in a cement-graphite powder base paste used as an anode in ECE of concretes contaminated with chlorides from the preparation of the mixture. The experimental parameters were: 2.3% of free chlorides, 21 days of ECE application, a Carbon Fiber Volume Fraction (CFVF) of 0.1, 0.3, 0.6, 0.9%, a lithium borate alkaline electrolyte, a current density of $4.0A/m^2$ and a cement/graphite ratio of 1.0 for the paste. The efficiency of the ECE in the traditional technique using metal mesh as an anode was 77.6% and for CFVF of 0.9% it was 90.4%, with a tendency to increase to higher percentages of the CFVF in the conductive cement-graphite paste, keeping the pH stable and achieving a homogeneous ECE in the mass of the concrete contaminated with chlorides.

Effect of Electrolyte-Additives on the Performance of Al-Air Cells (전해질 첨가제가 알루미늄-공기전지의 성능에 미치는 영향)

  • Park, Gwun Pil;Chun, Hai Soo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.52-57
    • /
    • 1998
  • The effects of additives such as zinc compounds in 4M KOH electrolyte of Al-air cell have been studied. Zinc compounds in electrolyte increased hydrogen evolution overpotential and TPC(tripotasium citrate)/CaO formed fine film on aluminum surface, and these additives decreased hydrogen evolution rate and corrosion rate of aluminum. These additives shifted the OCP in the positive direction on high purity aluminum(purity, 99.999%) and in the negative direction on Al No 1050(purity,99.5%). Addition of two or more additives resulted in the prevention or the reduction of corrosion rate and hydrogen evolution at OCP. As the overpotential on Al electrode increased, the hydrogen evolution rate decreased and the utilization of aluminum increased. At high current density$(>100mA/cm^2)$, TPC/CaO/ZnO additives increased the utilization of high purity aluminum up to that of aluminum alloys containing indium, gallium and thallium.

  • PDF

The Study on the Electrochemical Polarization Characteristics of Hydrogen Embrittlement for Ferrite Stainless Steel with Welding Conditions (용접조건에 따른 페라이트 스테인리스강에 대한 수소취성의 전기화학적 분극특성에 관한 연구)

  • Choi, Byung-Il;Lim, Uh-Joh
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.30-35
    • /
    • 2005
  • In order to examine the electrochemical polarization characteristics of hydrogen embrittlement far STS444 with welding conditions, this paper carried out the accelerated hydrogen osmosis test and the electrochemical polarization test. That is, in $0.5M\; H_2SO_4+0.001M\;As_2O_3$ solution, the hydrogen embrittlement behavior of STS444 added to load of $1,400kg/cm^2$ together with hydrogen osmosis by current of $30mA/cm^2$ far 60 min. was considered. In researching the electrochemical polarization characteristics of hydrogen embrittlement for STS444 with welding conditions, the previous study clarified that tensile strength or elongation became low influenced by absorption of oil or water before welding. In this paper, we proposed the advanced mechanism of hydrogen embrittlement that integrated electrochemical corrosion with the existing mechanism of hydrogen embrirtlement.

  • PDF

A study on mechanical properties of concrete including activated recycled plastic waste

  • Ashok, M.;Jayabalan, P.;Saraswathy, V.;Muralidharan, S.
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.207-215
    • /
    • 2020
  • This paper describes the experimental studies carried out to determine the properties of fresh and hardened concrete with Recycled Plastic Waste (RPW) as a partial replacement material for fine aggregates. In the experimental study, RPW was used for replacing river sand and manufactured sand (M sand) aggregates in concrete. The replacement level of fine aggregates was ranging from 5% to 20% by volume with an increment of 5%. M40 grade of concrete with water cement ratio of 0.40 was used in this study. Two different types of RPW were used, and they are (i) un-activated RPW and (ii) activated RPW. The activated RPW was obtained by alkali activation of un-activated RPW using NaOH solution. The hardened properties of the concrete determined were dry density, compressive strength, split tensile strength, flexural strength and ultrasonic pulse velocity (UPV). The properties of the concrete with river sand, M sand, activated RPW and un-activated RPW were compared and inferences were drawn. The effect of activation using NaOH solution was investigated using FT-IR study. The micro structural examination of hardened concrete was carried out using Scanning Electron Microscopy (SEM). The test results show that the strength of concrete with activated RPW was more than that of un-activated RPW. From the results, it is evident that it is feasible to use 5% un-activated RPW and 15% activated RPW as fine aggregates for making concrete without affecting the strength properties.

Effects of PEO Conditions on Surface Properties of AZ91 Mg Alloy (PEO 처리조건에 따른 마그네슘 합금 AZ91의 표면특성변화에 관한 연구)

  • Park, Kyeong-Jin;Jung, Myung-Won;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.71-77
    • /
    • 2010
  • Mg alloys have been used in automobile industry, aerospace, mobile phone and computer parts owing to low density. However, they have a restricted application because of low mechanical and poor corrosion properties. Thus, improved surface treatments are required to produce protective films. Environmental friendly Plasma Electrolytic Oxidation(PEO) was used to produce protective films on magnesium alloys. PEO process is combined electrochemical oxidation with plasma treatment in the aqueous solution. In this study, the effects of applied voltage and applied current on the surface morphologies were investigated. Also, the effects of Direct Current(DC) and Pulse Current(PC) were compared. PC and constant current control gave the dense coating on the Mg alloy. The potentiodynamic polarization tests were carried out for the analysis of corrosion properties of specimens. The surface hardness was 5 times higher than that of untreated AZ91D.

Evaluation of Biocompatibility of Anodized and Hydrothermally Treated Pure Niobium Metal (양극산화와 열수처리한 순수 니오비움 금속의 생체활성 평가)

  • Won, Dae-Hee;Choi, Un-Jae;Lee, Min-Ho;Bae, Tae-Sung
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.79-88
    • /
    • 2005
  • This study was performed to investigate the surface properties of electrochemically oxidized pure niobium by anodic oxide and hydrothermal treatment technique. Niobium specimens of $10\times10mm$ in dimension were polished sequentially from #600, #800, #1000 emery paper. The surface pure niobium specimens were anodized in an electrolytic solution that was dissolved calcium and phosphate in water. The electrolytic voltage was set in the range of 250 V and the current density was 10 $mA/cm^2$. The specimen was hydrothermal treated in high-pressure steam at 300$^{\circ}C$ for 2 hours using an autoclave. Then, specimens were immersed in the Hanks' solution with pH 7.4 at 37$^{\circ}C$ for 30 days. The surface of specimen was characterized by scanning electron microscope(SEM), energy dispersive X-ray microanalysis(EDX), potentiostat/galvanostat test, and cytotoxicity test. The results obtained was summarized as follows; According to the result of measuring corrosion behavior at 0.9% NaCl, corrosion resistance was improved more specimens treated with anodic oxide than in hydrothermal treated ones. The multi-porous oxide layer on surface treated through anodic oxidation showed a structure that fine pores overlap one another, and the early precipitation of apatite was observed on the surface of hydrothermal treated samples. According to the result of EDX after 30 days deposition in Hanks' solution, Ca/P was 1.69 in hydrothermal treated specimens. In MTT test, specimens treated through anodic oxidation and hydrothermal treated ones showed spectrophotometer similar to that of the control group. Thus no significant difference in cytotoxicity was observed (P>0.05).

  • PDF

A model to develop the porosity of concrete as important mechanical property

  • Alyousef, Rayed;Alabduljabbar, Hisham;Mohamed, Abdeliazim Mustafa;Alaskar, Abdulaziz;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.147-156
    • /
    • 2020
  • This numerical study demonstrates the porosity conditions and the intensity of the interactions with the aggressive agents. It is established that the density as well as the elastic modulus are correlated to ultrasonic velocity The following investigation assessed the effects of cement grade and porosity on tensile strength, flexural and compressive of Ultra High Performance Concrete (UHPC) as a numerical model in PLAXIS 2d Software. Initially, the existing strength-porosity equations were investigated. Furthermore, comparisons of the proposed equations with the existing models suggested the high accuracy of the proposed equations in predicting, cement grade concrete strength. The outcome obtained showed a ductile failure when un-corroded reinforced concrete demonstrates several bending-induced cracks transfer to the steel reinforcement. Moreover, the outcome also showed a brittle failure when wider but fewer transverse cracks occurred under bending loads. Sustained loading as well as initial pre-cracked condition during the corrosion development have shown to have significant impact on the corrosion behavior of concrete properties. Moreover, greater porosity was generally associated with lower compressive, flexural, and tensile strength. Higher cement grade, on the other hand, resulted in lower reduction in concrete strength. This finding highlighted the critical role of cement strength grade in determining the mechanical properties of concrete.

Study on the Cathodic Protection Characteristics of Hot Water Boiler by Mg-Alloy Galvanic Anode(1) (Mg 합금 유전양극에 의한 온수Boiler의 음극방식특성에 관한 연구(1))

  • 임우조;윤병두
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.2
    • /
    • pp.147-152
    • /
    • 2001
  • Corrosion damage of boiler, factory equipment and so forth occur quickly due to using of the polluted water, resulting in increasing leak accident. Especially, working life of hot water boiler using the polluted water becomes more short, and energy loss increases. The cathodic protection method is the most economical and reliable one to prevent corrosion damage of steel structures. Mg-base alloys galvanic anode protection of cathodic protection methode is suitable for the application of hot water boiler using water with high specific resistance such as tap water. This paper is studied on the cathodic protection characteristics of hot water boiler. In tap water solution, the measurement of cathodic protection potential according to the time elapsed is carried out, and behavior of cathodic polarization with current change is investigated. The main results obtained are as follows. In hot water boiler shell, the open circuit potential of base metal become less noble than that of weld Bone, and the current density of base metal becomes low than that of weld zone. The further distance from Mg-alloy galvanic anode, the higher cathodic protection potential of hot water boiler appears. And protective potential becomes high according to pass cathodic protection time and after 6∼10 days become stable.

  • PDF

Carbonation Analysis of Bridge Structures in Urban Area Based on the Results of the Field Test (현장실험결과를 활용한 국내 도심지 교량구조물의 탄산화 해석)

  • Kim, Hun-Kyom;Kim, Sung-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.111-118
    • /
    • 2010
  • Reinforced steel corrosion due to concrete carbonation is one of main factors on the durability of RC structure. The carbonation velocity have an effect on carbon dioxide density, concrete quality and structural shape. Specially, these problems have increased in urban area. This study investigates the carbonation status of the bridges and quantifies the effect of carbonation based on various domestic field data. The failure probability of durability is evaluated on the basis of reliability concept. According to experimental results of the carbonation depth, the carbonation depth increased with structural age and carbonation velocity decreased with high strength of concrete. In most cases, the failure probability of durability by carbonation was more than 10%. Also, The results requires the minimum cover thickness of 70-80mm for target safety index(${\beta}$=1.3) proposed by Korean concrete specification.