• Title/Summary/Keyword: Corrosion density

Search Result 744, Processing Time 0.031 seconds

Effect of Electropolishing Process on Corrosion Resistance of Co-Cr Alloy (Co-Cr alloy의 전해연마에 따른 부식의 영향)

  • Park, Je-Min;Kim, Wan-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.4
    • /
    • pp.199-204
    • /
    • 2010
  • The Co-Cr alloys have clinical histories as dental and orthopaedic implants, and recently as cardiovascular stent applications because they exhibit a high elastic modulus and radiopacity. In order to improve their mechanical and corrosion resistance, electropolishing is employed as the final process. Electropolishing, an anodic dissolution process in the transpassive state, is sensitively affected by process conditions such as current density, machining time, and electrode gap. In this study, the effect of the electropolishing conditions on surface roughness and corrosion resistance is investigated for Co-Cr alloys (L605). The most smooth surface is obtained when electropolishing is performed at 15-20 V for 15-30 sec with a electrode gap of 3.5 mm. It is found out that electropolishing reduces corrosion rate about one-tenth as much.

Prediction of bond strength between concrete and rebar under corrosion using ANN

  • Shirkhani, Amir;Davarnia, Daniel;Azar, Bahman Farahmand
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.273-279
    • /
    • 2019
  • Corrosion of the rebar embedded in concrete has a fundamental role in the determination of life and durability of the concrete structures. Researches have demonstrated that artificial neural networks (ANNs) can effectively predict issues such as expected damage in concrete structures in marine environment caused by chloride penetration, the potential of steel embedded in concrete under the influence of chloride, the corrosion of the steel embedded in concrete and corrosion current density in steel reinforced concrete. In this study, data from different kind of concrete under the influence of chloride ion, are analyzed using the neural network and it is concluded that this method is able to predict the bond strength between the concrete and the steel reinforcement in mentioned condition with high reliability.

Electrodeposition Characteristics of Corrosion Resistant Tantalum Coating Layer for Hydrogen Production Sulfide-Iodine Process (수소생산을 위한 Sulfide-Iodine 공정장치용 초내식 탄탈코팅층 전착특성)

  • Lee, Youngjun;Kim, Daeyoung;Han, Moonhee;Kang, Keangsoo;Bae, Gigwang;Lee, Jonghyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.573-580
    • /
    • 2012
  • Corrosion resistance and basic physical properties of solid tantalum are not comparable to most of the structural metallic materials. The relative high cost and melting temperature of tantalum are obstacles to be widely applied to general engineering processes. Electrodeposition in molten salt enables compact and uniform tantalum coating. In this study, Ta was coated onto base metal (SUS316L) with different current densities (0.5, 5, $20mA/cm^2$) by using MSE (Molten Salt Electrodeposition). In this study, it showed that deposition efficiency and microstructure of Ta coating layer were strongly depended on current density. In the case of the current density of $5mA/cm^2$, densest microstructure was obtained. The current density above $5mA/cm^2$ caused non-uniform microstructure due to rapid deposition rate. Dense microstructure and intact coating layer contributed to significant corrosion resistance enhancement.

해양환경하에서의 알루미늄 합금 선박용 재료의 기계적 특성과 전기화학적 특성 평가

  • 김성종;고재용;정석기;김정일
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.161-165
    • /
    • 2005
  • Recently, it is on the increase interest for Al alloy with new material for ship application to substitute for FRP ship. The reason is thatAl alloy ship has beneficial characteristics such as high sea speed, increase of loadage and easy to recycle compared with FRP ship. In this paper, mechanical and electrochemical properties are investigated by slow strain rate test experiment in various applied potential condition. These results will provide as reference data to design ship by deciding optimum protection potential regard to hydrogen embrittlement and stress corrosion cracking. In general, Al and Al alloys are not corroded with forming film which has the corrosion resistance property in neutral solution. However, it was observed that formation and destruction of passive film by $Cl^-$ ion in sea water environment. At comparison of current density after 1200 sec in potentiostatic experiment, the current density in the potential range of -0.68 $\~$-1.5 V is shown low value. The low current density means protection potential range. Elongation in applied potential of 0 V was high. However, the corrosion protection application in this condition is impossible potential because the toughness is low value by decreasing strength by active dissolution reaction at parallel part of specimen. The film composed with $CaCO_3$ and $Mg(OH)_2$ has a corrosion resistance property. However, the uniform electrodeposition coating at below -1.6 V potential is not formed since the time to form the uniform electrodeposition coating is short. Therefore, it is concluded that mechanical property is poor because effect by hydrogen gas generation is larger than that of electrodeposition coating. It is concluded that the optimum protection potential range from comparison of_maxim urn tensile strength, elongation and time to fracture is -1.3$\~$0.7 V (SSCE).

  • PDF

The Study on the Corrosion Characteristics of STS 304 Pipeline Steel Weldment for Gas Cooling & Heating System (가스 냉온수기용 STS 304 배관 용접부의 부식특성에 관한 연구)

  • Kim, Hwan-Sik;Lim, Uh-Joh
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.31-36
    • /
    • 2007
  • In order to study on the corrosion characteristics of STS 304 pipeline steel weldment for gas cooling & heating system. the electrochemical polarization test and corrosion test by impressed potential in 0.5M $H_2SO_4+0.01M$ KSCN solution was carried out. Also, SEM and hardness of welding zone was measured. And then passive behavior, corrosion behavior by the impressed potential and SEM aspect and hardness behavior of base metal(BM) and heat affected zone(HAZ) for STS 304 pipe were investigated. The main results are as follows: 1) The critical anodic current density of heat affected zone(HAZ) is drained more highly than that of base metal(BM), and primary passive potential of HAZ become higher than that of BM. 2) The passive current density of TUE is drained more highly than that of BM, and passive region of BM become bigger than that of HAZ. 3) By the impressed potential, the current density of HAZ is drained more than that of BM.

  • PDF

The Study on the Corrosion Behavior of STS 304 for Gas Boiler in the Condensed Water (응축수 중에서 가스보일러용 STS 304의 부식거동에 관한 연구)

  • Du Yun Byoung;Lim Uh Joh;Jeong Ki Cheol
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.21-25
    • /
    • 2005
  • This paper was studied on the corrosion behavior of STS 304 for gas boiler in the condensed water, the electrochemical polarization test of STS 304 for gas boiler in the condensed water was carried out. And the corrosion behavior of STS 304 was considered. The main results are as following: 1) As corrosion environment is acidified from neutrality, the polarization resistance of STS 304 decreases and the corrosion potential is less noble. 2) The corrosion reaction mechanism of STS 304 is cathodic control. 3) As corrosion environment is acidified, the passive potential range of STS 304 decreases. Also, the passive current density of STS 304 increases.

  • PDF

Corrosion Behavior of Casting Aluminum Alloys in H2SO4 Solution (H2SO4 수용액에서의 주조용 알루미늄 합금들의 부식거동)

  • Woo, Sang-Hyun;Son, Young-Jin;Lee, Byung-Woo
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.17-21
    • /
    • 2016
  • The corrosion behavior of aluminum alloys in the $H_2SO_4$ solution was investigated based on potentiodynamic techniques. Electrochemical properties, such as corrosion potential($E_c$), passive potential($E_p$), corrosion current density($I_c$), corrosion rate(mpy), of Al-Mg-Si, Al-Cu-Si and Al-Si alloys were characterized at room temperature. Passive aluminum oxide film, which including $Al_2(SO_4)_3$ and $3Al_2O_34SO_38H_2O$, were uniformly formed on the surface via the reaction of Al with $SO{_3}^{2-}$ or $SO{_4}^{2-}$ ions in the $H_2SO_4$ solution and the dependence of the corrosion behavior on the alloying element was discussed. The selective leaching of alloy element increased with increasing Cu content in the aluminum alloys.

Study on the Cavitation Damage of Cupronickel(70/30) Tube for Gas Absorption Refrigeration Machine

  • Lim, Uh-Joh;Jeong, Ki-Cheol;Yun, Byoung-Du
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.332-337
    • /
    • 2004
  • The use of gas absorption refrigeration machine has considerably increased because of the shortage of the electric power in the summer and the regulation of freon refrigerant. Gas absorption refrigeration machine consists of a condenser, a heat exchanger. supplying pipes, a radiator etc, This system is likely to be corroded by acid. dissolved oxygen and gases, Cavitation erosion-corrosion by flow velocity of cooling water may happen in absorption refrigeration machine. In these cases. erosion and corrosion occur simultaneously. Then, it makes a serious damage with synergy effect. Therefore, this paper was studied on the cavitation damage of cupronickel(70/30) tube for gas absorption refrigeration machine, In the $30^{\circ}C$ tap water, linear polarization test and anodic polarization test were carried out for copper(C1220T-OL) and cupronickel(70/30) tube. Also, cavitation erosion-corrosion behavior of cupronickel (70/30) tube was considered, The main results are as following: (1) In the linear test, the corrosion current density of cupronickel(70/30) is higher than that of copper. (2) The erosion-corrosion rate of cupronickel(70/30) displayed later tendency than that of copper by vibratory cavitation in cooling water. (3) In cooling water, the progress mechanism of erosion-corrosion rate of copper and cupronickel(70/30) follows a pattern of incubation, acceleration, attenuation and a steady state period.

Investigation on surface hardening and corrosion characteristic by water cavitation peening with time for Al 5052-O alloy (5052-O 알루미늄 합금의 워터 캐비테이션 피닝 시간에 따른 표면 경화와 부식 특성에 관한 연구)

  • Kim, Seong-Jong;Hyun, Koang-Yong
    • Corrosion Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.151-156
    • /
    • 2012
  • The cavity formed by the ultrasonic generation in the fluid with the application of water cavitation peening collides into the metal surface. At this time, the surface modification effect such as the work hardening presents by the compressive residual stress formed due to the localized plastic deformation. In this investigation, the water cavitation peening technology in the distilled water with the lapse of time was applied to 5052-O aluminum alloy for aluminum ship of a high value. So, the optimum water cavitation peening time on the effect for surface hardening and anti-corrosion property was investigated. Consequently, the water cavitatin peening time on excellent hardness and corrosion resistance characteristic presented 3.5 min. and 5.0 min, respectively. The surface hardness in the optimum water cavitation peening time was improved approximately 45% compared to the non-WCPed condition. In addition, corrosion current density was decreased.

Corrosion Damage Characteristics of Inconel 600 with Reduction Conditions in Chemical Decontamination Process (화학제염공정에서 환원공정조건에 따른 Inconel 600의 부식손상 특성)

  • Han, Min-Su;Jung, Kwang-Hu;Yang, Ye-Jin;Park, IL-Cho;Lee, Jung-Hyung;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.332-338
    • /
    • 2017
  • In this study, we evaluated tendency and degree of corrosion damages of Inconel 600 after chemical decontamination treatments under three different conditions. In the decontamination processes, the oxidation and reduction were performed as one cycle. Each process was continued up to 5 cycles. Characteristics of corrosion under decontamination processes were evaluated by Tafel analysis and weight loss. Characteristics of surface damage were observed by scanning electron microscope(SEM) and three-dimensional(3D) microscope. As the cycle proceeded, weight loss and corrosion current density increased. Intergranular corrosion damage occurred on the surface of the materials. The result revealed that the surface of Inconel 600 was attacked by the strong acid solution under all chemical decontamination processes, but the degree of the corrosion damage was different depending on the processes.