• Title/Summary/Keyword: Corrosion Rust

Search Result 119, Processing Time 0.029 seconds

Development of Corrosion Rust Removing Unit for Small Ship Propeller (소형선박용 프로펠러의 부식 녹 제거장치 개발)

  • Kim, Gui-Shik;Han, Se-Woong;Hyun, Chang-Hae
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.72-77
    • /
    • 2005
  • The materials used in a ship screw propeller are commonly made with brass. The seawater corrosion and seawater cavitation of the screw propeller reduces the propulsive performance of the ship. In screw manufacturing, the corrosion rust of the screw propeller is removed through a hand grinding method. The grinding process produces dust of the heavy metals from the brass. The dust creates a poor working environment that is harmful to the health of the workers. An automatic corrosionrust removing apparatus, using a blasting method, was developed for the improvement of screw polishing conditions and its working environment. The performance of this apparatus was investigated by surface roughness, weight loss rate, hardness, electrochemical corrosion resistance, and cavitation erosion, after removing of the corrosion rust under various blasting conditions. Two medias of alumina and emery were used in this experiment. The surface roughness and hardness of the screw were improved by this apparatus. The electrochemical corrosion potential (Ecorr) and current density (Icorr) were measured by the dynamic polarization method, using a potentiostat,under the conditions of surface polishing with grinding, blasting, wire brushing, and fine sand papering. The test results prove that the new corrosion rust-removing apparatus improves the surface performance of a screw propeller.

Design of Advanced Weathering Steel with High Corrosion Resistance for Structural Applications

  • Choi, B.K.;Jung, H.G.;Yoo, J.Y.;Kim, K.Y.
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.121-129
    • /
    • 2005
  • Basic design concept of the future steel structure requires environmental compatibility and maintenance free capability to minimize economic burdens. Recent trends in alloy design for advanced weathering steel include addition of various alloying elements which can enhance formation of stable and protective rust layer even in polluted urban and/or high $Cl^{-}$ environment. The effects of Ca, Ni, W, and Mo addition on the corrosion property of Ca-modified weathering steel were evaluated through a series of electrochemical tests (pH measurement and electrochemical impedance spectroscopy: EIS) and structural analysis on rust layer formed on the steel surface. Ca-containing inclusions of Ca-Al-Mn-O-S compound are formed if the amount of Ca addition is over 25 ppm. Steels with higher Ca content results in higher pH value for condensed water film formed on the steel surface, however, addition of Ni, W, and Mo does not affect pH value of the thin water film. The steels containing a high amount of Ca, Ni, W and Mo showed a dense and compact rust layer with enhanced amount of ${\alpha}-FeOOH$. Addition of Ni, W and Mo in Ca-modified weathering steel shows anion-selectivity and contributes to lower the permeability of $Cl^{-}$ ions. Effect of each alloying element on the formation of protective rust layer will be discussed in detail with respect to corrosion resistance.

Protective Ability Index of Rust Layer Formed on Weathering Steel Bridge

  • Hara, S.;Kamimura, T.;Miyuki, H.;Yamashita, M.;Uchida, H.
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.128-132
    • /
    • 2007
  • For a quantitative inspection on the performance of weathering steel bridges, we have investigated the relationship between the corrosion rate and the composition of the rust layers formed on weathering steel bridges located in various environments in Japan and applied a protective ability index (PAI) to the bridges. The corrosion rates were clearly classified by the PAI, ${\alpha}/{\gamma}*$ and sub index of $({\beta}+s)/{\gamma}*$, where $\alpha$, \gamma*, $\beta$ and s are the mass ratio of crystalline $\alpha-FeOOH$, the total of $\gamma$-FeOOH+ $\beta$-FeOOH + the spinel-type iron oxide (mainly $Fe_3O_4$), $\beta-FeOOH$ and spinel-type iron oxide, analyzed by powder X-ray diffraction, respectively. In the case of ${\alpha}/{\gamma}$*>1, the rust layer works protective enough to reduce the corrosion rate less than 0.01 mm/y. The sub index $({\beta}+s)/{\gamma}*$<0.5 or >0.5 classifies the corrosion rate of the non-protective rust layers, therefore the former state of the rust layer terms inactive and the latter terms active. The quantitative inspection of a weathering steel bridge requires a performance-inspection (PI) and periodical deteriorationinspections (DI). The PI can be completed by checking of the PAI, ${\alpha}/{\gamma}*$. The DI on the weathering steel bridges where deicing salt is sprinkled can be performed by checking the PAI, $({\beta}+s)/{\gamma}*$.

Bond Stress of the Bar Removed Rust with Concrete (전식녹을 제거한 철근과 콘크리트의 부착응력에 관한 실험적 연구)

  • Choi, Hyo-Seok;Lee, Joo-Il;Ryu, Soo-Hyun;Yu, Ho-Hyun;Kim, Jin-Mu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.188-194
    • /
    • 2001
  • A reinforced concrete structure is complex structure that works as one body with bonding role of steel bar and concrete. The bonding action between steel bar and concrete makes possible the compound structure. The transmission of mutual strength of the steel bar with concrete in structure is determined by the bonding characteristic of steel bar and concrete surface. But the efficiency of bonding characteristic of steel bar is Questionable by the corrosion cause by the delay construction term, the wrong management, etc. So this study investigate bonding characteristic of reinforced concrete using pull-out test method which steel bar removed rust and the principal variables of this study are concrete compression strength and the degree of corrosion. The result showed that bonding strength tend to increase when removed rust of steel bar whereas it tend to decrease when not removed rust.

  • PDF

Three-poles Touch-type Corrosion Sensor for Edge Detection of Initial State of Iron Rust

  • Yonemoto, Naruto;Shida, Katsunori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.308-311
    • /
    • 1998
  • Some nondestructive diagnostic methods including various types of corrosion sensors have been investigated. Under these conditions, a new structure of sensor that has a pair of electrode and magneto-supply was proposed. In order to detect the edge of the iron rust part, three-poles touch-type corrosion sensor is now proposed. The iron rust pattern where the sensor touches is estimated by means of the impedance of the sensor, and the edge of the iron rust is recognized by comparing the three measured impedances. As the result, our proposed sensor is useful to detect the initial state of iron rust.

  • PDF

Study on the Corrosive Characters of Carbon Steel in the Marine Splash Zone

  • Zhu, Xiangrong;Han, Bing
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.26-29
    • /
    • 2003
  • This study determined that the four corrosive characters of carbon steel in the marine splash zone (MSZ) in China's four sea areas. It has a range and a corrosion peak value. The rust in the MSZ plays the role of "depolarizer" in the cathodic process of corrosion. The growth law of the rust layer in MSZ has a character of "annual ring". In addition the reasons causing serious corrosion of carbon steel in the marine splash zone has been discussed in this paper.

The Prediction of Remaining Service Life of Land Concrete Due to Steel Corrosion (철근부식에 의한 육지 콘크리트의 잔존수명 예측)

  • 정우용;윤영수;송하원;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.69-80
    • /
    • 2000
  • This paper presents the prediction of remaining service life of the concrete due to steel corrosion caused by the following three cases; carbonation, using sea sand and using deicing salts. The assessment of initiation period was generalized considering the existing perdiction models in the literature, corrosion experiment and field assessment. To evaluate the prediction equation of rust growth, the corrosion accelerating experiments was performed. The polarization resistance was measured by potentiostat and the conversion coefficient of polarzation resistance to corrosion rate was determined by the measurement of real mass loss. Chloride content, carbonation, cover depth, relative humidity, water-cement ratio(W/C), and the use of deicing salts were taken into account and the resulting prediction equation of rust growth was proposed on the basis of these properties. The proposed equation is to predict the rust growth during any specified period of time and be effective in particular for predicting service life of concrete in the case of using sea sand.

A Study on the Relationship between Degree of Rust Condition and Bond Strength in Reinforced Concrete Members (철근의 부식정도와 부착강도에 대한 연구)

  • 유환구;이병덕;김국한;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.621-626
    • /
    • 1998
  • An experimental investigation on the reinforcing bar corrosion and relationshid of reinforcing bar and concrete bond strength has been conducted to establish the allowable limit of rust in the construction field. The reinforcing bars used in this study were rusted before embedding in concrete. The first component of this experiment is to make rust of reinforcing bar rust artificially based on Faraday's theory at certain rates such as 2, 4, 6, 8 and 10% of reinforcing bar weight. For estimation of the amount of rust by weight, Clarke's solution and Shot blasting were adopted and compared. Parameters include 240 and 450kg/㎠ of compressive strengths and diameter of reinforcing bar (16, 19 and 25mm) corresponding development length for pull-ort test. And, pull-out tests were carried. out according to KSF 2441 and ASTMC 234 to investigate the effect of the corrosion rate on reinforcing bar-concrete bond behavior. It is found from the test results that the test techniques for corrosion of bar used in this study is relatively effective and correct test method. Results shows that up to 2% of rust increases the bond strength regardless of concrete strength and diameter of reinforcing bar like the existing data. It might be because of the roughness from rust. As expected, the bond strength increases as compressive strength of concrete increases and the diameter of bar decreases.

  • PDF

Mechanical Characteristics and Corrosion Resistance of Concrete Using Tannin Acid-Corrosion Inhibitor (탄닌산 부식 억제제를 사용한 콘크리트의 역학적 특성 및 부식저항성)

  • Yang, Eun-Ik;Ryu, Jong-Hyun;Youm, Kwang-Soo;Hwang, In-Dong;Kim, Myung-Yu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.741-746
    • /
    • 2008
  • Many methods have been introduced to protect the corrosion of embedded steel in RC structure. One of the methods that restrain corrosion of steel is corrosion inhibitor. The technology that delayed the progress of corrosion is developed recently by converting active rust to passive rust. However, the performance for concrete structure is not fully examined because this corrosion inhibitor is developed for normal metal product. In this study, the application of corrosion inhibitor that use tannin acid is investigated by concrete specimen. According to the results, tannin acid corrosion inhibitor does not occur reduction of workability and strength in concrete. When corrosion inhibitor is added more than 4% per cement weight, the penetration depth of chloride decrease about 10%. Also, corrosion resistance of concrete is improved because tannin acid corrosion inhibitor has an effect on converting the rust of steel into stable state. It is showed in special that the addition more than 6% is effective in corrosion resistance.

Effect of Aluminum and Silicon on Atmospheric Corrosion of Low-alloying Steel under Containing NaHSO3 Wet/dry Environment

  • Chen Xinhua;Dong Junhua;Han Enhou;Ke Wei
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.315-318
    • /
    • 2008
  • The atmospheric corrosion performance of Al-alloying, Si-alloying and Al-Si-alloying steel were studied by wet/dry cyclic corrosion tests (CCT) at $30^{\circ}C$ and 60% relative humidity (RH). The corrosion electrolyte used for CCT was 0.052 wt% $NaHSO_{3}$ (pH~4) solution. The result of gravimetry demonstrated that Al-Si-bearing steels showed lower corrosion resistance than other rusted steels. But the rusted 0.7%Si-alloying steel showed a better corrosion resistance than rusted mild steel. Polarization curves demonstrated that Al-/Si-alloying and Al-Si-alloying improved the rest potential of steel at the initial stage; and accelerated the cathodic reduction and anodic dissolution after a rust layer formed on the surfaces of steels. XRD results showed that Al-Si-alloying decreased the volume fraction of $Fe_{3}O_{4}$ and $\alpha-FeOOH$. The recycle of acid accelerated the corrosion of steel at the initial stage. After the rust layer formed on the steel, the leak of rust destabilized the rust layer due to the dissolution of compound containing Al (such as $FeAl_{2}O_{4}$, $(Fe,\;Si)_{2}(Fe,\;Al)O_{4}$). Al-Si-alloying is hence not suitable for improving the anti-corrosion resistance of steel in industrial atmosphere.