• 제목/요약/키워드: Corrosion Properties

검색결과 1,760건 처리시간 0.027초

Recent Progress of Automotive Galvanized Steels in Korea

  • Lee, Suk-Kyu;Kim, Jong-Sang;Choo, Wung-Yong
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.254-258
    • /
    • 2010
  • Due to the global warming and economic crisis, automakers are currently focusing on the development of high fuel-efficiency vehicles. To accord with these requirements, steelmakers have been trying to develop advanced high-strength steels with improved automotive-related properties. In addition, galvanizing technologies have been developed to improve coating properties for AHSS (Advanced High Strength Steel) such as pre-oxidation and pre-coating, as well as roll dent prevention. In this paper, newly developed products and technologies for automotive galvanized steel sheet are reviewed.

The Electrochemical Properties and Mechanism of Formation of Anodic Oxide Films on Mg-Al Alloys

  • Kim, Seong-Jong;Okido, Masazumi
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권7호
    • /
    • pp.975-980
    • /
    • 2003
  • The electrochemical properties and the mechanism of formation of anodic oxide films on Mg alloys containing 0-15 mass% Al, when anodized in NaOH solution, were investigated by focusing on the effects of anodizing potential, Al content, and anodizing time. The intensity ratio of Mg(OH)₂ in the XRD analysis decreased with increasing applied potential, while that of MgO increased. Mg(OH)₂ was barely detected at 80 V, while MgO was readily detected. The anti-corrosion properties of anodized specimens at each constant potential were better than those of non-anodized specimens. The specimen anodized at an applied potential of 3 V had the best anti-corrosion property. The intensity ratio of the β phase increased with aluminum content in Mg-Al alloys. During anodizing, the active dissolution reaction occurred preferentially in β phase until about 4 min, and then the current density increased gradually until 7 min. The dissolution reaction progressed in α phase, which had a lower Al content. In the anodic polarization test in 0.017 mol·$dm^{-3}$ NaCl and 0.1 mol·$dm^{-3}$ Na₂SO₄ at 298 K, the current density of Mg-15 mass% Al alloy anodized for 10 min increased, since the anodic film that forms on the α phase is a non-compacted film. The anodic film on the α phase at 30 min was a compact film as compared with that at 10 min.

Ti과 Ti합금의 SBF에서 Apatite 형성 관찰 및 부식거동 테스트 (Corrosion Analysis and Apatite Forming Ability of Ti and Ti-Alloys in SBF Solution)

  • 이승우;김윤종;최재우;박중근;김원수;김택남
    • 한국재료학회지
    • /
    • 제15권10호
    • /
    • pp.671-677
    • /
    • 2005
  • Ti and Ti alloys are known to have excellent corrosion properties, which is an important aspect for biocompability of these implants in human body. In our study, four types of samples (Cp-Ti, Ti-6Al-4V, $0.5wt.\%$ Fe-Ti and ECAP Ti) were tested for their apatite forming ability and corrosion properties. The micropolished samples were treated with 5M NaOH solution at $60^{\circ}C$ for 24 hours. Each samples was gently washed with distilled water and heat-treated at 600"C for 1 hour. The heat-treated samples were soaked in Simulated Body Fluid (SBF) solution at $36.5^{\circ}C$ in an incubator for different period of time. The test revealed that $0.5 wt.\%$ Fe-Ti showing faster apatite growth on the surface (7th day) compared to other samples. Polarization curve test (PCT) was also carried out to determine the corrosion resistance of each samples in SBF solution. ECAP-Ti showed highest corrosion resistance compared to any other samples. $0.5wt.\%Fe-Ti$ showed higher corrosion potential and corrosion current compared to other samples.

서산 비경도 출수 상평통보의 혐기성 부식 특성 (Anaerobic Corrosion Properties of Sangpyeongtongbo Excavated at Bigyeongdo, Seosan)

  • 김규빈;정광용
    • 보존과학회지
    • /
    • 제33권3호
    • /
    • pp.167-179
    • /
    • 2017
  • 서산 비경도 출수 상평통보를 대상으로 혐기성 수중 매장환경에서 형성되는 부식화합물 성분과 이에 따른 혐기성 부식 원인을 추정하였다. 미세조직 관찰, 원소 mapping, 층위별 주성분 분석, 부식화합물 동정을 실시하였다. 그 결과 표면의 고착물은 침상형 육면체형 팔면체형으로 분류되며, 그에 따른 분석 결과 Cu, Pb, S 등의 원소가 검출되었다. 원소 mapping에서는 최외곽에 Cu-S로 이루어진 뚜렷한 층이 확인되었다. 층위별 주성분은 Cu, S, Pb 등이 검출되었고, Zn은 검출되지 않았다. 부식화합물은 $PbCO_3$(고착물), $Cu_{1.96}S$(소지금속)이 나타났다. 따라서 서산 비경도 출수 상평통보의 혐기성 부식 특성은 탈아연, 황화동, 납화합물 세 가지로 요약할 수 있다.

아연 및 알루미늄이 도금된 Hot-Press Forming 강의 염화물 환경 내 전기화학적 부식 및 수소확산거동 (Electrochemical Corrosion and Hydrogen Diffusion Behaviors of Zn and Al Coated Hot-Press Forming Steel Sheets in Chloride Containing Environments)

  • 박진성;이호종;김성진
    • 한국재료학회지
    • /
    • 제28권5호
    • /
    • pp.286-294
    • /
    • 2018
  • Hot-press forming(HPF) steel can be applied successfully to auto parts because of its superior mechanical properties. However, its resistances to aqueous corrosion and the subsequent hydrogen embrittlement(HE) decrease significantly when the steel is exposed to corrosive environments. Considering that the resistances are greatly dependent on the properties of coating materials formed on the steel surface, the characteristics of the corrosion and hydrogen diffusion behaviors regarding the types of coating material should be clearly understood. Electrochemical polarization and impedance measurements reveal a higher corrosion potential and polarization resistance and a lower corrosion current of the Al-coating compared with Zn-coating. Furthermore, it was expected that the diffusion kinetics of the hydrogen atoms would be much slower in the Al-coating, and this would be due mainly to the much lower diffusion coefficient of hydrogen in the Al-coating with a face-centered cubic structure. The superior surface inhibiting effect of the Al-coating, however, is degraded by the formation of local cracks in the coated layer under severe stress conditions, and therefore further study will be necessary to gain a clearer understanding of the effect of cracks formed on the coated layer on the subsequent corrosion and hydrogen diffusion behaviors.

PEO 처리시 Ca-GP첨가에 따른 AZ31합금의 내식성 및 표면특성에 관한 연구 (A study on corrosion resistance and surface properties of AZ31 alloy according to Ca-GP addition during PEO treatment)

  • 이준수;박제신;박일송
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.238-247
    • /
    • 2021
  • PEO (plasma electrolytic oxidation) was applied to modify the surface of AZ31 magnesium alloy in this study. The mixed solution of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) was used as the electrolyte, and 0 - 0.05 g/L of Ca-GP (Glycerol Phosphate Calcium salt) was added in the electrolyte as an additive. PEO treatment was conducted at a current density of 30mA/cm2 for 5 minutes using a DC power supply. The surface properties were identified by SEM, XRD and surface roughness analyses, and the corrosion resistance was evaluated by potentiodynamic polarization and immersion tests. In addition, the biocompatibility was evaluated by immersion test in SBF solution. As the concentration of Ca-GP was increased, the surface morphology was denser and more uniform, and the amount of Ca and the thickness of oxide layer increased. Only Mg peak was observed in XRD analysis due to very thin oxide layer. The corrosion resistance of PEO-treated samples increased with the concentration of Ca-GP in comparision with the untreated sample. In particular, the highest corrosion resistance was identified at the group of 0.04g Ca-GP through potentiodynamic polarization and immersion tests in saline solution (0.9 wt.%NaCl). During the immersion in saline solution, pH rapidly increased at the beginning of immersion period due to rapid corrosion, and then increase rate of pH decreased. However, the pH value in the SBF temporarily increased from 7.4 to 8.5 during the day, then decreased due to the inhibition of corrosion with HA(hydroxyapatite) formation.

8인치 직경의 304L 스테인리스강관의 부식특성에 미치는 제작공정의 영향 (Effect of Manufacturing Process on the Corrosion Properties of 304L Stainless Steel Pipe with 8-inch Diameter)

  • 김기태;허승영;장현영;김영식
    • Corrosion Science and Technology
    • /
    • 제17권6호
    • /
    • pp.279-286
    • /
    • 2018
  • Austenitic stainless steels used in nuclear power plants mainly use pipes made of seamless pipes, which depend on imports. The manufacturing process and high cost are some of the problems associated with seamless pipes. Therefore, in this study, the corrosion characteristics of the seamless pipe and the SAW pipe were assessed to determine the safety and reliability of the SAW pipe in a bid to replace the seamless pipe. Microstructure was analyzed using an optical microscope and the degree of hardness was measured using a Rockwell B scale. Intergranular corrosion resistance was evaluated by ASTM A262 Practice A, C, and E methods. The degree of sensitization was determined using a DL-EPR test. Anodic polarization test was performed in deaerated 1% NaCl solution at $30^{\circ}C$ and the U-bend method was used to evaluate the SCC resistance in 0.01 M $Na_2S_4O_6$ at $340^{\circ}C$ and 40% NaOH solution at $290^{\circ}C$. Weld metal of the SAW pipe specimen showed relatively high degree of sensitization and intergranular corrosion rate. However, annealing to SAW pipes improved the corrosion properties in comparison to that of the seamless pipe.

무붕산 알칼리 냉각재 온도 증가에 따른 Type 630 스테인리스강의 부식특성 평가 연구 (A Study on Accelerated Corrosion Rate of Stainless Steel Type 630 with Increasing Temperature of B-free Alkaline Coolant)

  • 박정수;임상엽;전순혁;김주성;오정목;심희상
    • 한국압력기기공학회 논문집
    • /
    • 제20권1호
    • /
    • pp.49-55
    • /
    • 2024
  • Stainless 630 (or 17-4PH) is a precipitation-hardening martensitic stainless steel that has excellent mechanical properties and corrosion resistance. These characteristics make the STS630 to be used as a consisting material for various components such as spider, pin, spring, and spring retainer, of the control rod drive mechanism (CRDM) in pressurized water reactors (PWRs). In general, it is well known that the oxide layer of stainless steel consists of a duplex layer, a compact inner layer of FeCr2O4 spinel, and a coarse-grained outer layer of Fe3O4 spinel in PWR primary coolant condition. However, the characteristics of the oxide layer can be sensitively influenced by various water chemistry conditions such as temperature, dissolved oxygen, dissolved hydrogen, pH, pH adjuster type, and exposure time. In this work, we investigate the corrosion properties of the STS630 as a function of coolant temperature in an NH3 alkaline solution for its boron-free application in a small modular reactor, to confirm the feasibility for usage as a boron-free SMR structural material. As a result, oxide layer of corroded STS630 is consist of double-layer oxides consisting of a Cr-rich dense inner oxide and a Fe-rich polyhedral outer particles like as that in commercial PWR primary coolant. The corrosion rate of STS630 increases with increase in test time and temperature and the corrosion rate-time model equation was developed based on experimental data. Overall, it is expected that the results in this study provides useful data for the corrosion behavior of STS630 in alkaline environments, contributing to the development of selecting suitable materials for SMRs.

Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion

  • Gao, Shan;Peng, Zhen;Wang, Xuanding;Liu, Jiepeng
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.615-627
    • /
    • 2019
  • This paper aims to study the compressive behavior of circular hollow and concrete-filled steel tubular stub columns under simulated marine atmospheric corrosion. The specimens after salt spray corrosion were tested under axial compressive load. Steel grade and corrosion level were mainly considered in the study. The mechanical behavior of circular CFST specimens is compared with that of the corresponding hollow ones. Design methods for circular hollow and concrete-filled steel tubular stub columns are modified to consider the effect of marine atmospheric corrosion. The results show that linear fitting curves could be used to present the relationship between corrosion rate and the mechanical properties of steel after simulated marine atmospheric corrosion. The ultimate strength of hollow steel tubular and CFST columns decrease with the increase of corrosion rate while the ultimate displacement of those are hardly affected by corrosion rate. Increasing corrosion rate would change the failure of CFST stub column from ductile failure to brittle failure. Corrosion rate would decrease the ductility indexes of CFST columns, rather than those of hollow steel tubular columns. The confinement factor ${\xi}$ of CFST columns decreases with the increase of corrosion rate while the ratio between test value and nominal value shows an opposite trend. With considering marine atmospheric corrosion, the predicted axial strength of hollow steel tubular and CFST columns by Chinese standard agree well with the tested values while the predictions by Japanese standard seem conservative.

오스테나이트계 중탄소 및 저탄소 스테인리스강의 입계부식 거동 분석 (Intergranular Corrosion Behavior of Medium and Low Carbon Austenitic Stainless Steel)

  • 원석연;김규빈;유영란;최승헌;김영식
    • Corrosion Science and Technology
    • /
    • 제21권3호
    • /
    • pp.230-241
    • /
    • 2022
  • Austenitic stainless steel has been widely used because of its good corrosion resistance and mechanical properties. However, intergranular corrosion can occur if the alloy is welded or aged. The objective of this study was to determine intergranular corrosion behaviors of austenitic medium carbon (0.05 wt%) and low carbon (0.02 wt%) stainless steel aged at several conditions. Alloys were evaluated according to ASTM A262 Practice A, ISO 12732 DL-EPR (double loop-electrochemical potentiokinetic reactivation) test, and ASTM A262 Practice C. The degree of sensitization and intergranular corrosion rate were obtained. The relationship between the degree of sensitization and the intergranular corrosion rate showed a very large fluctuation. Such behavior might be related to whether two-dimension tests or three-dimension tests were performed. On the other hand, regardless of carbon content of alloys, when the intergranular corrosion rate increased, the degree of sensitization also increased. However, the DL-EPR test showed a higher sensitivity than the Huey test for differentiating the intergranular corrosion property at a low intergranular corrosion rate, while the Huey test had a higher sensitivity than the DL-EPR test for distinguishing the intergranular corrosion property at a high intergranular corrosion rate.