• Title/Summary/Keyword: Corrosion Fatigue

Search Result 418, Processing Time 0.023 seconds

A study on cytotoxicity of Ti-Nb alloys (Ti-Nb계 합금의 세포독성에 관한 연구)

  • Park, Hyo-Byeong
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.89-94
    • /
    • 2003
  • The use of titanium alloys as biomaterials is increasing due to their superior biocompatibility and enhanced corrosion resistance compared to conventional stainless steels and cobalt-based alloys. Ti-6Al-4V ($\alpha+\beta$type) alloy instead of pure titanium ($\alpha$type) is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength and corrosion resistance. It also has similar characteristics to Ti in inducing bony ingrowth. But it has been reported recently that the vanadium element expresses cytotoxicity and carcinogenicity and the aluminium element is related with dementia of Alzheimer type and neurotoxicity. In order to overcome their detrimental effects, $\beta$-phase stabilizer Nb was chosen in the present study. CP-Ti(ASTM grade 2), Ti-3wt.%Nb($\alpha$type), Ti-20wt.%Nb ($\alpha+\beta$type) and Ti-40 wt.%Nb($\beta$type) alloys were melted by vacuum arc furnace. Biocompatibility of Ti-Nb alloys was evaluated by cytotoxicity test. The results can be summarized as follows: 1. For the cytotoxicity test, Ti-Nb alloys showed excellent biocompatibility compared to CP-Ti(ASTM grade 2), 316L STS and Co-Cr alloys.

  • PDF

Effect of Stainless Steel Properties on Performance of Multi-layer Bellows (다층형 벨로우즈의 성능에 미치는 스테인리스강 물성의 영향)

  • Suh, C.H.;Oh, S.K.;Jung, Y.C.;Lee, R.G.;Park, M.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.223-228
    • /
    • 2009
  • Generally ferritic stainless steels are used for parts of exhaust system in commercial vehicle, because they have many advantages as low price and high corrosion resistant compared with austenitic stainless steels. Even though ferritic stainless steels have such various merits, austenitic stainless steels have been used to manufacture multi-layer bellows with complex geometry because of their high ductility. Recently, the mechanical properties of the ferritic stainless steels are getting improved and alternating austenitic stainless steel. In this paper, the possibility of mass production of multi-layer bellows made of ferritic stainless steel like MH1 and 443CT was studied. Tensile test, ridging test and corrosion test were carried out to observe material properties of STS304, MH1 and 443CT. Three types of prototype bellows were made using STS304, MH1 and 443CT stainless steels, and stiffness and fatigue tests were carried out to evaluate performance of the prototype bellows.

Strength estimation for FRP wrapped reinforced concrete columns

  • Cheng, Hsiao-Lin;Sotelino, Elisa D.;Chen, Wai-Fah
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.1-20
    • /
    • 2002
  • Fiber-Reinforced Plastics (FRP) have received significant attention for use in civil infrastructure due to their unique properties, such as the high strength-to-weight ratio and stiffness-to-weight ratio, corrosion and fatigue resistance, and tailorability. It is well known that FRP wraps increase the load-carrying capacity and the ductility of reinforced concrete columns. A number of researchers have explored their use for seismic components. The application of concern in the present research is on the use of FRP for corrosion protection of reinforced concrete columns, which is very important in cold-weather and coastal regions. More specifically, this work is intended to give practicing engineers with a more practical procedure for estimating the strength of a deficient column rehabilitated using FRP wrapped columns than those currently available. To achieve this goal, a stress-strain model for FRP wrapped concrete is proposed, which is subsequently used in the development of the moment-curvature relations for FRP wrapped reinforced concrete column sections. A comparison of the proposed stress-strain model to the test results shows good agreement. It has also been found that based on the moment-curvature relations, the balanced moment is no longer a critical moment in the interaction diagram. Besides, the enhancement in the loading capacity in terms of the interaction diagram due to the confinement provided by FRP wraps is also confirmed in this work.

Effect of Fe Content on Mechanical and Electrochemical Properties of Ti-Mo-Fe Alloys (Ti-Mo-Fe 합금의 Fe 함량에 따른 기계적 특성과 전기화학적 특성 비교·분석)

  • Ji-Won Kim;Jeong-Yeon Park;Min Gang;Ji-Hwan Park;Dong-Geun Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.145-152
    • /
    • 2023
  • β titanium alloys containing β stabilizing elements such as V, Nb, Ta, Mo and Fe are widely used etc, due to their excellent specific strength, corrosion resistance, fatigue strength and easy formability. New metastable β titanium alloys are developed containing low-cost elements (Mo and Fe) in this study. Fe element is a strong β-stabilizer which can affect the mechanical and electrochemical properties of Ti-5Mo-xFe (x = 1, 4 wt%) alloys. These properties were analyzed in connection with microstructure and phase distribution. Ti-5Mo-4Fe alloy showed higher compression yield stress and maximum stress than Ti-5Mo-1Fe alloy due to solid-solution hardening and grain refinement hardening effect. As Fe element increased, Fe oxide formation and reduction of ${\bar{Bo}}$ (bond order) value affect the decrease of corrosion resistance. Ti-5Mo-xFe alloys were more excellent than Ti-6Al-4V ELI alloy.

Development of Multi-layer Bellows using Ferritic Stainless Steel (페라이트계 스테인리스강을 사용한 다층형 벨로우즈 개발)

  • Suh, C.H.;Oh, S.K.;Jung, Y.C.;Choi, J.Y.;Park, M.K.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.281-285
    • /
    • 2008
  • Ferritic stainless steel is used for parts of exhaust system of commercial vehicle, because it has such advantages as low price and high corrosion resistant compared with austenite stainless steel. Even though ferritic stainless steel has these merits, to manufacture multi-layer bellows with complex geometry, austenite stainless steel is being used in the industry, because of it's high ductility. However, recently, the mechanical property of the ferritic stainless is getting improved and alternating austenitic stainless steel. In this paper, the possibility of mass production of bellows made of ferritic stainless steel like MH1 and 443CT is studied. Tensile test and ridging test are carried out to observe mechanical properties of STS304, MH1 and 443CT. Forming analysis using FEM is performed to investigate plastic strain during forming process. Prototype bellows has been made using STS304, MH1 and 443CT, respectively, and fatigue tests are carried out to evaluate fatigue life of bellows.

  • PDF

The Exit Hole Burr Generation of CFRP with Ultrasonic Vibration (초음파 진동에 따른 CFRP의 출구 구멍 버 생성)

  • Won, Sung-Jae;Li, Ching-Ping;Park, Ki-Moon;Ko, Tae Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.134-140
    • /
    • 2017
  • CFRP has many industrial applications due to its low weight and high strength properties. CFRP is a composite material composed of carbon fibers embedded in a polymer matrix; it provides excellent resistance to fatigue wear, corrosion, and breakage due to fatigue. It is increasingly demanded in aircraft, automotive, and medical industries due to its superior properties to aluminum alloys, which were once considered the most suitable for specific applications. The basic machining methods of CFRP are drilling and route milling. However, in the case of drilling, the delamination of each layer, uncut fiber, resin burning, spalling, and exit burrs are barriers to successful application. This paper investigates the occurrence of exit burrs when drilling holes with ultrasonic vibration. Depending on design parameters such as the point angle, the characteristics of hole drilling were identified and appropriate machining conditions were considered.

A Study on the Removal of CFRP Machining Defects by Various Tool Geometries (공구 형상에 따른 CFRP의 가공결함 제거에 관한 연구)

  • Park, Ki Moon;Ko, Tae Jo;Yu, Zhen;Kumaran S, Thirumalai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.16-23
    • /
    • 2017
  • CFRP(Carbon Fiber Reinforced Plastics) has many industrial applications due to its low weight and high strength properties. Due to its superior properties, for example, excellent resistance to fatigue wear, corrosion, and breakage from fatigue, it has been widely applicable to aircraft, automotive, and medical industries and so on. The main machining for CFRP is drilling, and route milling. In case of drilling, the machining defects such as the delamination of each layer, uncut fiber, resin burning, spalling, and exit burrs are inevitable. The issue to remove such kind of defects is necessary to make CFRP parts successful. From this point of view, this paper investigates the removal effectiveness of machining defects existing at exit region with different type of tool geometries. Consequently, based on the experiments, the tool geometry is most impact factor to remove uncut fiber or resin.

Applications of fiber optic sensors for structural health monitoring

  • Kesavan, K.;Ravisankar, K.;Parivallal, S.;Sreeshylam, P.
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.355-368
    • /
    • 2005
  • Large and complex structures are being built now-a-days and, they are required to be functional even under extreme loading and environmental conditions. In order to meet the safety and maintenance demands, there is a need to build sensors integrated structural system, which can sense and provide necessary information about the structural response to complex loading and environment. Sophisticated tools have been developed for the design and construction of civil engineering structures. However, very little has been accomplished in the area of monitoring and rehabilitation. The employment of appropriate sensor is therefore crucial, and efforts must be directed towards non-destructive testing techniques that remain functional throughout the life of the structure. Fiber optic sensors are emerging as a superior non-destructive tool for evaluating the health of civil engineering structures. Flexibility, small in size and corrosion resistance of optical fibers allow them to be directly embedded in concrete structures. The inherent advantages of fiber optic sensors over conventional sensors include high resolution, ability to work in difficult environment, immunity from electromagnetic interference, large band width of signal, low noise and high sensitivity. This paper brings out the potential and current status of technology of fiber optic sensors for civil engineering applications. The importance of employing fiber optic sensors for health monitoring of civil engineering structures has been highlighted. Details of laboratory studies carried out on fiber optic strain sensors to assess their suitability for civil engineering applications are also covered.

The Characteristics of Residual Stresses in the Welded Joint of P92 Steel for Fossil Power Plant by the X-ray Diffraction (X-ray 회절을 이용한 화력발전소용 P92 강 용접부의 잔류응력 특성)

  • Hyun, Jung-Seob;Yoo, Keun-Bong;Choi, Hyun-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.116-123
    • /
    • 2008
  • In the fossil power plant, the reliability of the components which consist of the many welded parts depends on the quality of welding. The residual stress is occurred by the heat flux of high temperature during weld process. This decreases the mechanical properties as the strength of fatigue and fracture or causes the stress corrosion cracking and fatigue fracture. Especially, the accidents due to the residual stress occurred at the weld parts of high-temperature and high-pressure pipes and steam headers. Also, the residual stress of the welded part in the recently constructed power plants has been brought into relief as the cause of various accidents. The aim of this study is the measurement of the residual stress using the x-ray diffraction method. The merits of this are more accurate and applicable than other methods. The materials used for the study is P92 steel for the use of high temperature pipe on super critical condition. The variables of tests are the post-weld heat treatment, the surface roughness and the depth from the original surface. The test results were analyzed by the distributed characteristics of the full width at half maximum intensity (FWHM) in x-ray diffraction intensity curve and by the relation of hardness with FWHM.

A Study on the Characteristic of Anti-corrosive Performance for the Cable Members (케이블 부재의 방청성능 특성에 관한 연구)

  • Ahn, Seung-Whan;Han, Sang-Eul;Lee, Sang-Ju
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.66-72
    • /
    • 2006
  • Recently nonlinear materials are used in construction of building and bridge then various structure formats are achieved positively. one of them, cable members, are the interesting study object which increase rigidity of a total structure by inducing tension. The way of construction using cable members is increasing, so the technology of design and construction are developing. Protection Fretting Fatigue is very important to maintain efficiency of cable member permanently. However, recognition of this is somewhat humble and this paper considers anti-corrosive performance of cable.

  • PDF