• Title/Summary/Keyword: Corrosion Fatigue

Search Result 418, Processing Time 0.027 seconds

The Effect of Compressive Residual Stress on Computer Corrosion Fatigue Crack of SAE 5155 (SAE 5155강의 컴퓨터부식피로 균열에 미치는 압축잔류응력의 영향)

  • Park, Sung-Mo;Moon, Kwang-Seok;Park, Kyung-Dong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.34-40
    • /
    • 2007
  • Antifatigue failure technology take an important part of current industries. Currently, the shot peening is used for removing the defect from the surface of steel and improving the fatigue strength on surface. Therefore, this paper the effect of compressive residual stress and corrosion of spring steel(SAE 5155)by shot-peening on fatigue crack growth characteristics in stress ratio(R=0.05)was investigated with considering fracture mechanics. By using the methods mentioned above, We arrived at the following conclusions. The fatigue crack growth rate(da/dN) of the shot-peening material was lower than that of the un-peening material. And in stage I, ${\Delta}Kth$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the un-peening material. Also m, fatigue crack growth exponent and number of cycle of the shot-peening material was higher than that of the un-peening material. That is concluded from effect of da/dN. Finally fracture of shot-peening material and un-peening material was identified and discussed in this study.

  • PDF

Characteristic of Corrosion Fatigue of High Strength Steel for Marine Structures (해양 구조물용 고장력강의 부식피로특성)

  • ;T. Kubo;H. Misawa
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.409-412
    • /
    • 2003
  • Fatigue strength. especially crack initiation behavior of high strength steel under marine water environment was investigated. Marine structures were usually constructed by lot of weld joints and were designed by basis of the fatigue strength of weld joints. This study was carried out to mini. The fatigue initiation behavior is more important rather than crack propagation behavior under the design of marine structures, because it is very difficult to find out the crack propagation phenomena and repair the damaged part of welded joints in sea water Then, the new configuration specimen for fatigue crack initiation tests was proposed. Using this new specimen, it is easy to carry out the crack initiation tests with relatively low cycling loading and clearly find out a crack initiation fatigue life.

  • PDF

Fatigue Life Properties of Messenger Wire with Service Environments (가설환경에 따른 조가선의 피로수명 특성)

  • 김용기;장세기;조성일
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.21-28
    • /
    • 2003
  • Environment-dependent fatigue life of Cu-Cd alloy wires used as messenger wires was investigated. Tensile test results showed the decrease of tensile strength and elongation of messenger wires by 3.7% and 16.8%, respectively, in used specimens when compared to new ones. Messenger wires used at industrial region for 26 yeras showed 35∼50% decrease in fatigue life, which is partly due to the in stress concentrations by formation of corrosion products at the surface. Single wires showed better fatigue properties than stranded wires, especially at low cycle regions with higher stresses. Stranded wires showed shorter fatigue lives than single wires because of friction between wires by surface contact. Service life of messenger wires was dependent upon the environments which they were exposed to. SO$_2$ and humidity deteriorated the fatigue properties by environmental degradation.

A Study on the Corrosion Fatigue Fracture of U-notch Radius (U-노치반경에 따른 부식피로 파괴거동)

  • 이장규;윤종희;인승현;우창기;신관수;최양호;박성완
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.58-63
    • /
    • 2002
  • This study has performed rotary bending fatigue testing that smooth specimen using SM45C materials and notched specimen whose radii were R6, R4 and R2, were processed in 3% NaCl aqueous solutions or in the air. The results are as followed; 1. In the air fatigue limit at 10$^{7}$ cycles remarkably reduced as notch radius goes small. 2. In 3% NaCl aqueous solution fatigue strength at 10$^{6}$ cycles also had large range of reduction as notch radius goes small. 3. Comparing fatigue strength in the air, fatigue strength at 10$^{6}$ cycles in 3% NaCl aqueous solution reduced by 46.2% at smooth specimen, 55.3% at R6 notch radius, 45.8% at R4 and 39.7% at R2 respectively. 4. The reason that fatigue strength reduced in the reduction of notch radius sire was because the surface of notch exposed in corrosion was small and consequently it was less corroded.

  • PDF

Rating of steel bridges considering fatigue and corrosion

  • Lalthlamuana, R.;Talukdar, S.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.643-660
    • /
    • 2013
  • In the present work, the capacity ratings of steel truss bridges have been carried out incorporating dynamic effect of moving vehicles and its accumulating effect as fatigue. Further, corrosion in the steel members has been taken into account to examine the rating factor. Dynamic effect has been considered in the rating procedure making use of impact factors obtained from simulation studies as well as from codal guidelines. A steel truss bridge has been considered to illustrate the approach. Two levels of capacity ratings- the upper load level capacity rating (called operating rating) and the lower load level capacity rating (called inventory rating) were found out using Load and Resistance Factor Design (LRFD) method and a proposal has been made which incorporates fatigue in the rating formula. Random nature of corrosion on the steel member has been taken into account in the rating by considering reduced member strength. Partial safety factor for each truss member has been obtained from the fatigue reliability index considering random variables on the fatigue parameters, traffic growth rate and accumulated number of stress cycle using appropriate probability density function. The bridge has been modeled using Finite Element software. Regressions of rating factor versus vehicle gross weight have been obtained. Results show that rating factor decreases when the impact factor other than those in the codal provisions are considered. The consideration of fatigue and member corrosion gives a lower value of rating factor compared to those when both the effects are ignored. In addition to this, the study reveals that rating factor decreases when the vehicle gross weight is increased.

The Influence of Marine Environmental Factor on the Corrosion Fatigue Fracture of SS41 Steel (SS41강의 부식피로파양에 미치는 해양환경인자의 영향)

  • 김원영;임종문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 1991
  • Corrosion fatigue test was performed by the use of plane bending fatigue tester in marine environment having various specific resistance from 25(natural sea water) to 5000.ohm.cm. It is in order to investigate the effects of marine environmental factor on the corrosion fatigue fracture of SS41 steel. The main results obtained are as follows; 1. The aspect ratio(b/a) of corner crack growing in natural sea water is lower than that in air. 2. The surface crack growth rate(da/dN) in marine environment is faster than that in air and da/dN delaies with the specific resistance increased. 3. The experimental constant m of paris rule [da/dN=C(${\delta}$K)$^m$] decrease with the specific resistance decreased and the effect of corrosion in proportion to the specific resistance is more sensitive than that of stress intensity factor range(${\delta}$K) under region II. 4. The accelerative factor(${\alpha}$) in marine environment is about 1.1-2.7 and .alpha. is increase under the low region of stress intensity factor range(${\delta}$K). 5. The electrode potential($E_0$) gets less noble potential with the specific resistance decreased.

  • PDF

Corrosion Fatigue Characteristics of CF8M and CF8A on the PWR Condition (PWR환경에서 CF8M, CF8A 배관재의 부식피로특성 연구)

  • Jeong, Ill-Seok;Lee, Yong-Sung;Kim, Sang-Jai;Song, Taek-Ho;Cho, Sun-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1062-1067
    • /
    • 2003
  • In this study, corrosion fatigue characteristics of CF8M and CF8A steel were investigated on the simulated PWR condition(Temp.:$316^{\circ}C$, Pres.: 15:MPa). To make the simulated PWR condition. the special test machine consisted of INSTRON, Autoclave, LOOP and Measurement system was developed. As ${\Delta}K$ is ranged from 11 to $20MPa{\sqrt{m}}$, Crack growth rate of PWR condition is faster than air condition. Above $20MPa{\sqrt{m}}$, the crack growth rate of PWR and air condition is similar. Corrosion fatigue characteristics regardless of the ferrite contents($10{\sim}25wt.%$) is not different. After the test, the fracture surface of specimens was examined. It was difficult to verify the fracture modes such as striation, intergranular crack and cleavage and so on. As the ferrite content of CF8M is increased, the more particles covered fracture surface were peeled.

  • PDF

A Study on Rotary Bending Fatigue Strength of the $CO_2$ Gas Welded Joint in Air and Sea Water ([$CO_2$] 용접이음재의 대기 및 해수중에서의 회전굽힘 피로강도에 관한 연구)

  • S.W. Kang;S.Y. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.118-126
    • /
    • 2000
  • TMCP steel has been widely used to construct ships and offshore structures. When it comes to ship and offshore structures, corrosion fatigue damages caused by sea water and fatigue occurred by wave-induced forces usually go on occurring simultaneously. So the fatigue life in corrosion environment is decreased markedly in comparison with that in air. The fatigue crack in corrosion easily initiates on welded joints of structure like as the fatigue crack in air. Therefore it is very important to study the fatigue properties of those of their welded joints as well as steel plates. In this study, rotary bending fatigue tests have been performed to investigate fatigue crack initiation and behavior of fatigue crack growth on CO2 gas weld HAZ of TMCP steel. The fatigue test used the specimens with various stress concentration factors in air and 3% NaCl solution

  • PDF

Evaluation of Fatigue Strength Share Effect of the Rust Due to Corrosion at Ship Structural Plate (선체구조 판부재에서 해수부식현상에 기인하는 부식층의 피로강도분담효과에 관한 연구)

  • Kim, Won Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2063-2068
    • /
    • 2013
  • Ship and offshore structures, those are to be used under the seawater conditions are prone to corrosion. In this research, the effect of rust existence on the fatigue strength at structural member of ship and offshore structure was investigated. For this purpose, fatigue tests for the rust removed specimen were conducted. In addition, the comparison of fatigue strength between rust removed specimen and rusted specimen was conducted. With these test results, fatigue strength share effect was investigated. Finally, at this research, it was found that there is fatigue strength share effect on the rust. In comparison of fatigue strength reduction factor, fatigue strength of the rust removed specimen is 18.1% lower than that of the rusted specimen. From the above, it was known that as far as there are not any harmful ingredients in it, rust on the steel plate is beneficial in an aspect of fatigue strength.

Local Corrosion and Fatigue Damages of Steel Plates at the Boundary with Concrete (콘크리트에 접해있는 강재의 국부부식과 피로손상)

  • Kim, In Tae;Kainmua, Shigenobu;Cheung, Jin Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.313-321
    • /
    • 2008
  • Recently in Japan, fracturing was observed on the diagonal member of a through truss bridge at the boundary region with the concrete slab. Local corrosion damage where the diagonal member was enclosed in the concrete slab is an important factor in the fracture. In this study, accelerated exposure tests were carried out on concrete-steel model specimens simulating steel members at the boundary with concrete. Fatigue tests were then performed on the corroded model specimens. Accelerated exposure tests of the S6-cycle, which is carried out on the model specimens for 150, 300, 450 and 600 da ys. Their surface geometry was then measured. From the accelerated exposure test results, change in maximum and mean corrosion depths was determined according to the testing periods. The effect of local corrosion on fatigue strength was also presented based on the fatigue test results.