• Title/Summary/Keyword: Corrosion Environment

Search Result 1,103, Processing Time 0.027 seconds

Development of a Failure Probability Model based on Operation Data of Thermal Piping Network in District Heating System (지역난방 열배관망 운영데이터 기반의 파손확률 모델 개발)

  • Kim, Hyoung Seok;Kim, Gye Beom;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.322-331
    • /
    • 2017
  • District heating was first introduced in Korea in 1985. As the service life of the underground thermal piping network has increased for more than 30 years, the maintenance of the underground thermal pipe has become an important issue. A variety of complex technologies are required for periodic inspection and operation management for the maintenance of the aged thermal piping network. Especially, it is required to develop a model that can be used for decision making in order to derive optimal maintenance and replacement point from the economic viewpoint in the field. In this study, the analysis was carried out based on the repair history and accident data at the operation of the thermal pipe network of five districts in the Korea District Heating Corporation. A failure probability model was developed by introducing statistical techniques of qualitative analysis and binomial logistic regression analysis. As a result of qualitative analysis of maintenance history and accident data, the most important cause of pipeline damage was construction erosion, corrosion of pipe and bad material accounted for about 82%. In the statistical model analysis, by setting the separation point of the classification to 0.25, the accuracy of the thermal pipe breakage and non-breakage classification improved to 73.5%. In order to establish the failure probability model, the fitness of the model was verified through the Hosmer and Lemeshow test, the independent test of the independent variables, and the Chi-Square test of the model. According to the results of analysis of the risk of thermal pipe network damage, the highest probability of failure was analyzed as the thermal pipeline constructed by the F construction company in the reducer pipe of less than 250mm, which is more than 10 years on the Seoul area motorway in winter. The results of this study can be used to prioritize maintenance, preventive inspection, and replacement of thermal piping systems. In addition, it will be possible to reduce the frequency of thermal pipeline damage and to use it more aggressively to manage thermal piping network by establishing and coping with accident prevention plan in advance such as inspection and maintenance.

A Study of the Making of Ornamental Metal Quiver Fittings in the Ancient Tombs of Jeongchon, Bogamri, Naju (나주 복암리 정촌 고분 출토 화살통 장식의 제작 방법 연구)

  • Lee, Hyeyoun
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.242-253
    • /
    • 2020
  • Six ornamental metal quiver fittings were excavated from stone chamber No.1 of the ancient tombs of Jeongchon, Bokam-ri, Naju. The ornamental quiver fittings are metal, but the body of the quiver was made of organic material, so that it corroded and disappeared in the burial environment. The ornamental metal quiver fittings were made in pairs, and decorated one quiver according to the location they were found in and their forms. The ornamental metal quiver fitting can be divided into two types: A band style ornament (帶輪狀金具) which decorates the arrow pouch, and a board style ornament (板狀金具) which decorates the board connecting the waist belt. Two ornamental metal quiver fittings excavated from wooden coffin 2 of stone chamber No.1, were made in the band style, while the ornamental metal quiver fittings from southeast of stone chamber No.1 were identified as two boardstyle ornaments and two band-style ornaments for what was presumed to be belt loops. Material analysis of the ornamental metal quiver fittings shows that they are made of a gilt bronze plate attached to an iron plate, and the surface is marked with a speck of chisel to make lines and patterns. Chemical composition analysis (XRF) established that 24~40wt% Au and 50~93wt% Cu were detected on the gold surface, and it was confirmed that bronze corrosion had taken place on the gilt surface. SEM-EDS analysis of the gold plating layer identified a working line for glossing, and 7~9wt% Hg and an amalgam of gilt layers was detected, confirming the amalgam gilding. CT and FT-IR analysis established that the band style was double-layered with silk fabric under the iron plate, and there was also a lacquer piece underneath. The band-style ornaments have two layers of silk under the iron plate, along with lacquer pieces. Adding the fabric to the arrow pouch increases adhesion and decorative value. It is assumed that the lacquer pieces indicate that the surface of the lacquered arrow pouch had fallen together with the ornaments. On the other hand, the board-style ornaments have a thick layer of organic matter under the iron plate, but this is difficult to identify and appears to be a remnant of the quiver board. The characteristics of these ornamental metal quiver fittings were similar in Baekje, Silla, and Gaya cultures from the late 4th to the late 5th centuries, and enable us to identify the art of ancient gold craftwork at that time.

Review for Mechanisms of Gas Generation and Properties of Gas Migration in SNF (Spent Nuclear Fuel) Repository Site (사용 후 핵연료 처분장 내 가스의 발생 기작 및 거동 특성 고찰)

  • Danu Kim;Soyoung Jeon;Seon-ok Kim;Sookyun Wang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.167-183
    • /
    • 2023
  • Gases originated from the final SNF (spent nuclear fuel) disposal site are very mobile in the barrier and they may also affect the migration of radioactive nuclides generated from the SNF. Mechanisms of gas-nuclide migration in the multi-barrier and their influences on the safety of the disposal site should be understood before the construction of the final SNF disposal site. However, researches related to gas-nuclide coupled movement in the multi-barrier medium have been very little both at home and abroad. In this study, properties of gas generation and migration in the SNF disposal environment were reviewed through previous researches and their main mechanisms were summarized on the hydrogeological evolution stage of the SNF disposal site. Gas generation in the SNF disposal site was categorized into five origins such as the continuous nuclear fission of the SNS, the Cu-canister corrosion, the oxidation-reduction reaction, the microbial activity, and the inflow from the natural barriers. Migration scenarios of gas in porous medium of the multi-barrier in the SNF repository site were investigated through reviews for previous studies and several gas migration types including ① the free gas phase flow including visco-capillary two-phase flow, ② the advection and diffusion of dissolved gas in pore water, ③ dilatant two-phase flow, and ④ tensile fracture flow, were presented. Reviewed results in this study can support information to design the further research for the gas-nuclide migration in the repository site and to evaluate the safety of the Korean SNF disposal site in view points of gas migration in the multi-barrier.