• Title/Summary/Keyword: Corrosion Environment

Search Result 1,111, Processing Time 0.03 seconds

Study on the Conservation of Scale Armor Using Duplication Technique - Focused on the Case of the Conservation Treatment of the Excavated Artifact from Jinyoung 2-Area, Gimhae - (복제 기법을 이용한 찰갑의 보존처리 - 김해 진영 2지구 출토품의 보존처리 사례를 중심으로 -)

  • Kim, Dong Min;Park, Jung Hyeok;Cho, Hyun Kyung;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.31 no.1
    • /
    • pp.75-86
    • /
    • 2015
  • A scale Armor is usually excavated in a scattered form weakened by corrosion after its burial. Therefore, they should be brought into the indoor in a safe environment for the on-site conservation treatment as it was excavated. They should be placed on a stable support with a reinforced base in the indoor treatment. In this process, the bottom surface which can not be observed after the conservation treatment is placed for a record by actual survey and photography. But this method had a limit on figuring out the whole aspects of the artifact. For compensating the defect, duplication of the artifact was considered as an alternative method for the previous two methods in the case of conservation of the scale Armor from Jinyoung 2-Area, Gimhae. Neck guard was excavated in a distorted form by the earth pressure, and was hard to recognize the original shape. However, whole real material of its original form was secured through the combination of each duplicated lamellae. Throughout the application of the duplication technique in the process of conservation of scale Armor and neck guard, it could secure the real material of the bottom surface and elevate the understanding of the artifact. Moreover, a constitution of the armor could be identified more effectively.

Characterization of Stress Corrosion Cracking at the Welded Region of High Strength Steel using Acoustic Emission Method (음향방출법에 의한 고 장력강 용접부의 부식손상 특성 평가)

  • Na, Eui-Gyun;Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.212-219
    • /
    • 2003
  • This study is to evaluate the characteristics of SCC at the welded region of high strength steel using acoustic emission(AE) method. Specimens were loaded by a slow strain rate method in synthetic seawater and the damage process was monitored simultaneously by AE method. Corrosive environment was controlled using the potentiostat, in which -0.8V and -1.1V were applied to the specimens. In the case of one-pass weldment subjected to -0.8V, much more AE counts were detected compared with the PWHT specimen. It was verified through the cumulative counts that coalescence of micro cracks and cracks for the one pass weldment with -0.8V were mostly detected. In case of the one pass weldment subjected to -1.1V, time to failure became shorter and AE counts were produced considerably as compared with that of the two pass weldment. It was shown that AE counts and range of AE amplitude have close relations with the number and size as well as width of the cracks which were formed during the SCC.

A Study on Measures to Achieve Performance and Safety of Air Respirators for Fire Fighters (소방대원용 공기호흡기의 성능안전확보 대책에 관한 연구)

  • Son, Bong-Sei;Oh, Suk-Hwan;Kim, Yeop-Rae
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.77-81
    • /
    • 2012
  • This study of aims to provide basic data for improve the performance of air respirators that generate by bad influencing elements in fire emergency field. With three types of conditions set up for these tests, the pressures of containers have been extracted; the ambient temperatures have been checked, and the generation of moisture inside and outside container have been checked and identified. Specifically, these tests have been conducted at temperatures ranging between $-20{\sim}40^{\circ}C$. The pressures of containers have been extracted to reach between 0.4~0.8 MPa, using a pressure regulating valve. These tests have resulted in no change in the temperature and moisture outside the containers and no generation of moisture inside the containers as well. Although moisture has been generated inside the pressure gauge, the amount of moisture has not exceeded 25 $mg/m^3$, i.e. the limit suggested by the Korean Government. Therefore, it is judged that the moisture generated inside air respirators, which can be the most critical issue in the equipment, is likely to be caused in the process of managing the equipment or replacing air in the equipment at places of end-users, rather than in the process of manufacturing and production of the equipment.

Evaluation of Chloride Diffusion Characteristics in Concrete with Fly Ash Cured for 2 Years (2년 양생된 Fly Ash 콘크리트의 염화물 확산 특성 평가)

  • Yoon, Yong-Sik;Hwang, Sang-Hyeon;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.8-15
    • /
    • 2019
  • When RC(Reinforced Concrete) structures are exposed to harsh environment, deterioration phenomenon occurs, and the corrosion in rebar due to chloride intrusion is known as representative deterioration, so called chloride attack. In this paper, chloride resistance performance of 2 years aged concrete is evaluated considering 3 levels of water to binder ratio(0.37, 0.42, and 0.47) and 2 levels of substitution ratio of fly ash(0% and 30%). Accelerated chloride diffusion coefficient tests referred to Tang's method, total passed charge tests referred to ASTM C 1202, and compressive strength tests referred to KS F 2405 are performed. With adaptation of the previous test results and the results from this study, time-dependent chloride diffusion characteristics are analyzed for each concrete. The FA(Fly Ash) concrete has higher chloride resistance performance than OPC(Ordinary Portland Cement) concrete. According to the evaluation standard of ASTM C 1202, the FA concrete has "Moderate" grade after 49 days while OPC concrete does "Moderate" grade after 365 days. As the results of time-parameter for chloride diffusion, OPC concrete and FA concrete show the decreasing behavior of time-parameters with increasing water to binder ratio. Also, FA concrete has 1.57~2.74 times of time-parameter than OPC concrete. That's cause is thought that the time-parameter indicates the gradient of decreasing of diffusion coefficient. FA concrete has higher time-parameters than OPC concrete by pozzolanic reaction of FA.

Strength and Durability Characteristics of Low-alkali Mortar for Artificial Reefs Produced by 3D Printers (인공어초 3D 프린터 출력을 위한 저알칼리 모르타르의 강도와 내구성능)

  • Lee, Byung-Jae;Kim, Bong-Kyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.67-72
    • /
    • 2022
  • Concrete prevents corrosion of reinforcing bars due to its strong alkalinity. However, in the sea, strong alkali components with a pH of 12 to 13 are eluted, which adversely affects the ecological environment and growth of marine organisms. In this study, the mechanical properties and durability of the low alkali mortar were evaluated for the development of a low alkali mortar for the 3D printed artificial reefs. As a result of evaluation of strength characteristics, the α-35 mixture, which were produced with fly ash, silica fume and α-hemihydrate gypsum, satisfied the strength requirement 27 MPa in terms of compressive strength. As a result of pH measurement, it was found that mixing with alpha-type hemihydrate gypsum resulted in minimizing pH due to the the formation of calcium sulfate instead of calcium hydroxide production. As a result of the chloride ion penetration resistance test, the α-35 mixture exhibited the best performance, 3844C. As a result of measuring the length change over time, the α-35 mixture showed the shrinkage 33.5% less compared to the Plain mix.

A Review of In-Situ Characterization and Quality Control of EDZ During Construction of Final Disposal Facility for Spent Nuclear Fuel (사용후핵연료 최종처분장 건설과정에서의 굴착손상영역(EDZ)의 현장평가 방법 및 시공품질관리 체계에 관한 사례검토)

  • Kim, Hyung-Mok;Nam, Myung Jin;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.107-119
    • /
    • 2022
  • Excavation-Disturbed Zone (EDZ) is an important design factor in constructing final disposal facilities for spent nuclear fuel, since EDZ affects mechanical stability including a spacing between disposal holes, and the hydraulic properties within EDZ plays a significant role in estimating in-flow rate of groundwater as well as a subsequent corrosion rate of a canister. Thus, it is highly required to characterize in-situ EDZ with precision and control the EDZ occurrence while excavating disposal facilities and constructing relevant underground research facilities. In this report, we not only reviewed EDZ-related researches carried out in the ONKALO facility of Finland but also examined appropriate methods for field inspection and quality control of EDZ occurrence. From the review, GPR can be the most efficient method for in-situ characterization of EDZ since it does not demand drilling a borehole that may disturb a surrounding environment of caverns. And the EDZ occurrence was dominant at a cavern floor and it ranged from 0 to 70 cm. These can provide useful information in developing necessary EDZ-related regulations for domestic disposal facilities.

A Study on the Frictional Characteristics of Fiber Reinforced Composites under Corrosive Environment (부식 환경 하에서의 섬유강화복합재료의 마찰 및 마모 특성 연구)

  • Choong-Yong Park;Dong-Hyun Park;Soo-Jeong Park;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.37-41
    • /
    • 2023
  • The treated water inside the ballast electrolytic cell creates a highly alkaline atmosphere due to hydroxide generated at the DSA(Dimension Stable Anode) electrode during electrolysis. In this study, a composite material that can replace the weakness of the PE-coated steel pipe used in the existing ballast pipe was prepared. The test samples are BRE(Basalt fiber reinforced epoxy), BRP(Basalt fiber reinforced unsaturated polyester), GRE(Glass fiber reinforced epoxy), and GRP(Glass fiber reinforced unsaturated polyester). And then it was immersed in NaOH for 720 hours. The friction test of each specimen was conducted. The Friction coefficient analysis according to material friction depth and interfacial adhesion behavior between resin and fiber were analyzed. As a result, the mechanism of interfacial separation between resin and fiber could be analyzed. In the case of the unsaturated polyester resin with low interfacial bonding strength the longer the immersion time in the alkaline solution, the faster the internal deterioration caused by the deterioration that started from the surface, resulting in a decrease in the friction coefficient. It is hoped that this study will help to understand the degradation behavior of composite materials immersed in various chemical solutions such as NaOH, acid, and sodium hypochlorite in the future.

A Study on the Synthesis and Tribological Characteristics of Calcium Sulfonate Grease with Improved Low-temperature Performance (저온 성능이 향상된 Calcium Sulfonate 그리스의 합성 및 트라이볼로지 특성 연구)

  • Gwang-Tae Kim;Hyun-Ho Park;Chang-Seop Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.434-443
    • /
    • 2023
  • We have investigated the performance improvement of grease by synthesizing calcium sulfonate grease as an alternative to lithium grease, which is widely used globally. Since the composition ratio of the grease, when manufactured, is usually 50% base oil and 50% thickener, using grease as a lubricant in a cryogenic environment is not encouraged due to its inferior low-temperature performance. In this study, we have synthesized three types of calcium sulfonate grease with paraffin oil and PAO-based base oil and thickener. Furthermore, lithium grease was synthesized via saponification with PAO-based base oil, lithium hydroxide, 12-hydroxystearic acid, and sebacic acid. We have measured low-temperature characteristics using a rheometer and low-temperature torque meter, and tribology characteristics were obtained using a four-ball lubricant tester and schwingung reibung verschleiß (SRV). As a result, the flow point of the calcium sulfonate grease synthesized with a PAO-based base oil and thickener was found to be -40℃, overcoming the existing calcium sulfonate grease's low-temperature limitation. Moreover, the synthesized calcium sulfonate grease showed low-temperature performance similar to that of lithium grease synthesized with PAO base oil, but superior anti-wear, extreme pressure, coefficient of friction, heat resistance, adhesion, and corrosion resistance. It is thus expected to commercially replace the existing lithium grease.

Stochastic investigation on three-dimensional diffusion of chloride ions in concrete

  • Ye Tian;Yifei Zhu;Guoyi Zhang;Zhonggou Chen;Huiping Feng;Nanguo Jin;Xianyu Jin;Hongxiao Wu;Yinzhe Shao;Yu Liu;Dongming Yan;Zheng Zhou;Shenshan Wang;Zhiqiang Zhang
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.247-261
    • /
    • 2023
  • Due to the non-uniform distribution of meso-structure, the diffusion of chloride ions in concrete show the characteristics of characteristics of randomness and fuzziness, which leads to the non-uniform distribution of chloride ions and the non-uniform corrosion of steel rebar in concrete. This phenomenon is supposed as the main reason causing the uncertainty of the bearing capacity deterioration of reinforced concrete structures. In order to analyze and predict the durability of reinforced concrete structures under chloride environment, the random features of chloride ions transport in concrete were studied in this research from in situ meso-structure of concrete. Based on X-ray CT technology, the spatial distribution of coarse aggregates and pores were recognized and extracted from a cylinder concrete specimen. In considering the influence of ITZ, the in situ mesostructure of concrete specimen was reconstructed to conduct a numerical simulation on the diffusion of chloride ions in concrete, which was verified through electronic microprobe technology. Then a stochastic study was performed to investigate the distribution of chloride ions concentration in space and time. The research indicates that the influence of coarse aggregate on chloride ions diffusion is the synthetic action of tortuosity and ITZ effect. The spatial distribution of coarse aggregates and pores is the main reason leading to the non-uniform distribution of chloride ions both in spatial and time scale. The chloride ions concentration under a certain time and the time under a certain concentration both satisfy the Lognormal distribution, which are accepted by Kolmogorov-Smirnov test and Chi-square test. This research provides an efficient method for obtain mass stochastic data from limited but representative samples, which lays a solid foundation for the investigation on the service properties of reinforced concrete structures.

Examination for Controlling Chloride Penetration of Concrete through Micro-Cracks with Surface Treatment System (표면도장공법을 적용한 미세균열 콘크리트의 염소이온 침투 제어 특성)

  • Yoon, In-Seok;Chae, Gyu-Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.729-735
    • /
    • 2008
  • For well-constructed concrete, its service life is a long period and it has an enough durability performance. For cracked concrete, however, it is clear that cracks should be a preferential channel for the penetration of aggressive substance such as chloride ions accoding to author's previous researches. Even though crack width can be reduced due to the high reinforcement ratio, the question is to which extend these cracks may jeopardize the durability of cracked concrete. If the size of crack is small, surface treatment system can be considered as one of the best options to extend the service life of concrete structures exposed to marine environment simply in terms of cost effectiveness versus durability performance. Thus, it should be decided to undertake an experimental study to deal with the effect of different types of surface treatment system, which are expected to seal the concrete and the cracks to chloride-induced corrosion in particular. In this study, it is examined the effect of surfaced treated systems such as penetrant, coating, and their combination on chloride penetration through microcracks. Experimental results showed that penetrant can't cure cracks. However, coating and combined treatment can prohibit chloride penetration through cracks upto 0.06 mm, 0.08 mm, respectively.