• Title/Summary/Keyword: Corrosion Degradation

Search Result 384, Processing Time 0.026 seconds

A Study on the Corrosion and Fatigue of Structural Materials for Rolling Stock (철도차량 구조재료의 부식 및 피로 특성 연구)

  • Jang Se-Ky;Kim Yong-Ki;Coo Byeong-Choon
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.299-307
    • /
    • 2005
  • In general, structural integrity of rolling stock structures should last more than 25 years. During the lifetime corrosive degradation occurs. For structural design and diagnosis, quantitative relationship between corrosive degradation and variation of mechanical properties such as tensile strength and fatigue strength is needed. In this study, first of all we established the atmospheric corrosion test procedure. At regular intervals using specimens of SM490A and SS400 on the atmospheric corrosion test bed, we carried out tensile and fatigue tests. The fatigue strength decreases as the atmospheric corrosion period increases. In addition we studied the effect of post-weld heat treatment on the tensile and fatigue behaviour and performed electrochemical corrosion tests.

Affect of Corrosion Potential and Current Density on Polarization Curves Variations of Polyvinylchloride[II]

  • Park, Chil-Nam;Yang, Hyo-Kyung;Kim, Sun-Kyu
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.3
    • /
    • pp.159-167
    • /
    • 1999
  • This study performed experiments for measuring corrosion potential and current density variations in the polarzation curves of polyvinylchloride. The results were examined to identify particular influences affectingthe corrosion potential such as temperature, pH, enzyme, and salt. The lines representing active anodic dissolution were only slightly shifted in the potential direction by temperature, pH, enzyme and salt. The Tafel slope for the anodic dissolution was determined using the polarization effect with varying conditions. The slope of the polarization curves describing the active-to-passive transition region was noticeably shifted in the potential direction. In addition, using the variation in conditions, the best temperature and pH were determined for the corrosion rate, and resistance of corrosion. The second anodic current density peak and maximum passive current density were designated as degraded(IP/I0). The value of IP/I0 was used in measuring the extent of the degradation of the polyvinychloride. The potentiodynamic parameters of the corrosion were obtained using a Tafel plot.

  • PDF

Investigation of Sweet and Sour Corrosion of Mild Steel in Oilfield Environment by Polarization, Impedance, XRD and SEM Studies

  • Paul, Subir;Kundu, Bikramjit
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.249-256
    • /
    • 2018
  • Metallic structures in the oil and gas production undergo severe degradation due to sweet and sour corrosion caused by the presence of $CO_2$ and $H_2S$ in the fluid environment. The corrosion behavior of 304 austenitic stainless was investigated in the presence of varying concentrations of $CO_2$ or $H_2S$ and $CO_2+H_2S$ to understand the effect of the parameters either individually or in combination. Potentiodynamic polarization study revealed that a small amount of $CO_2$ aided in the formation of calcareous deposit of protective layer on passive film of 304 steel, while increase in $CO_2$ concentration ruptured the layer resulting in sweet corrosion. The presence of $S^{2-}$ damaged the passive and protective layer of the steel and higher levels increased the degradation rate. Electrochemical impedance studies revealed lower polarization resistance and impedance at higher concentration of $CO_2$ or $H_2S$, supporting the outcomes of polarization study. XRD analysis revealed different types of iron carbides and iron sulphides corresponding to sweet and sour corrosion as the corrosion products, respectively. SEM analysis revealed the presence of uniform, localized and sulphide cracking in sour corrosion and general corrosion with protective carbide layer amid for sweet corrosion.

A Study on Corrosion CoCrMo Magnetic Thin Films (CoCrMo 자성박막의 부식에 관한 연구)

  • 남인탁;홍양기
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.3
    • /
    • pp.221-228
    • /
    • 1993
  • The general requirements of recording media include recording performance, environmental stability, runnability on the drive or deck, and manufacturability. CoCrMo thin films were prepared using RF sputtering system for a study on chemical stability. Surface degradation of the CoCrMo thin film was studied by SEM, XPS and AES. Surface degradation was found to be dependent of sputtering condition and Mo content. Addition of Mo to CoCr thin film improved dramatically its surface degradation resistance in dilute sulfuric acid, as indicated by active-passive transition appeared in electrochemical polarization curve. Futhermore, the passive current density was decreased with increasing Mo content. The reduction in a number density of corrosion sites by Mo addition vms observed, after accelerated corrosion test. AES survey indicated that corrosion occured on the site with Cr depletion and highly concentrated chloride ions.

  • PDF

Monitoring of Degradation Process of Commercial ME Tapes under High Humidity Environment by AC Impedance Techniques

  • Take, Seisho;Shimanuki, Akiko;Itoi, Yasuhiko;Okuyama, Masaru
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.194-197
    • /
    • 2004
  • The corrosion resistance of several kind of ME (Metal Evaporated) tape has been investigated both in mild sulfuric acid solution and NaCl solution by electrochemical impedance spectroscopy. It was found that the degradation of ME tapes was accelerated with increasing the concentration of sulfuric acid. There was no significant change in corrosion resistance when the concentration of NaCl was under 3.5 wt%. However, the impedance value decreased when the concentration of NaCl was up to 10 wt%. The degradation of backside of ME tapes was also investigated by AC impedance measurements. The results showed that the impedance behavior of backside plastic film changed with the concentration of sulfuric acid even at the beginning of immersion, implying the changing of the permeability for the backside of ME tapes. It was also found that the corrosion resistance of DVC (Digital Video Cassette) ME tape was better that that of Hi-8mm ME tapes in sulfuric acid solutions. Also, the backside of DVC ME tape showed better water resistance than that of Hi8 ME tapes.

Fundamental Study on Developing Embedded Mini-Sensor for Nondestructive Diagnosis Corrosion of Rebar (비파괴 철근 부식 진단을 위한 매립형 미니센서 개발에 관한 기초적 연구)

  • Joh, Sung-Hyung;Lim, Young-Chul;Ismail, Mohamed;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.179-187
    • /
    • 2010
  • Corrosion of rebar embedded reinforced concrete is the main cause of collapse and degradation of reinforced concrete structure. Degradation occurs in reinforced concrete structures from corrosion caused by the Chloride that the damage other than the severe degradation of the structure in terms of maintenance and construction when the huge expense required and deciding terms is hard. Therefore, early detection of rebar corrosion is important for efficient maintenance and repairing and planning. Meanwhile, how to evaluate the corrosion of the non-destructive measurements have been used a lot. In particular CM-II (corrosion meter) is used to measurement the natural potential, polarization resistance and the resistivity of the concrete, but has some disadvantages. Embedded mini-sensor has been developed in order to overcome these disadvantages. So Measurement corrosion for using the mini-sensor compares with the measured results CM-II (corrosion meter), the developed mini-sensor verify the validity.

Development of Lifetime Evaluation and Management Technologies for Nuclear Power Plants (원자력발전소 수명평가 및 수명관리 기술개발)

  • Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.991-1004
    • /
    • 2009
  • Operating experience of the various components in the nuclear power plants has shown that a variety of degradation mechanisms can occur during operation. Therefore, the accurate lifetime evaluation and systematic management are very important for the safe as well as the economical operation of the nuclear power plants. In this paper, the characteristics of a total of 17 degradation mechanisms were reviewed and the plausible degradation mechanisms such as stress corrosion cracking, fatigue, irradiation embrittlement, and so on, were identified. Also, the lifetime evaluation technologies which have been developed for the application to the domestic nuclear power plants are described. In addition, a total of 48 aging management programs which have been established for the safe operation of the various components are explained.

Degradation Analysis of Deteriorated Reinforced Concrete Structures due to Cracks and Steel Corrosion (균열 및 철근부식에 의해 열화된 콘크리트 구조물의 성능저하 해석)

  • Kim Kil Soo;Byun Keun Joo;Song Ha Won;Lee Chang Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.163-166
    • /
    • 2005
  • In this study, an unified algorithm for the degradation analysis which considers the cracks in concrete and steel corrosion is developed and implemented into finite element analysis program. Using the program, degradation analysis on reinforced concrete structures subjected to chloride attacks was carried out with time by considering the cracks and the steel corrosion and cracking due to expansion of corroded reinforcing bars. The analytical procedure proposal in this study can be used quantitative evaluation of degradation and service life prediction.

  • PDF

Meso-Scale Approach for Prediction of Mechanical Property and Degradation of Concrete

  • Ueda, Tamon
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.87-97
    • /
    • 2004
  • This paper presents a new approach with meso scale structure models to express mechanical property, such as stress - strain relationships, of concrete. This approach is successful to represent both uniaxial tension and uniaxial compression stress - strain relationship, which is in macro scale. The meso scale approach is also applied to predict degraded mechanical properties of frost-damaged concrete. The degradation of mechanical properties with frost-damaged concrete was carefully observed. Strength and stiffness in both tension and compression decrease with freezing and thawing cycles (FTC), while stress-free crack opening in tension softening increases. First attempt shows that the numerical simulation can express the experimentally observed degradation by introducing changes in the meso scale structure in concrete, which are assumed based on observed damages in the concrete subjected to FTC. At the end applicability of the meso scale approach to prediction of the degradation by combined effects of salt attack and FTC is discussed. It is shown that clarification of effects of frost damage in concrete on corrosion progress and on crack development in the damaged cover concrete due to corrosion is one of the issues for which the meso scale approach is useful.

A Study on Stress Corrosion Cracking Evaluation with Material Degradation of High Temperature Components (고온부재의 재질열화에 따른 응력부식균열 평가에 관한 연구)

  • Park, Jong-Jin;Yu, Ho-Seon;Jeong, Se-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1123-1132
    • /
    • 1996
  • It has been reported that high temperature structural components represent the phenomenon of material degradation according to a long term service under high temperature and pressure. Especially, fossile power plant components using the fossil fuel and heavy oil are affected by dewpoint corrosion of $H_2SO_4$produced during a combustion. Therefore, the service materials subjected to high temperature and pressure may occur the stress corrosion cracking. The object of this paper is to investigate SCC susceptibility according to the material degradation of the high temperature structural materials in dewpoint corrosive environment-$H_2SO_4$.The obtained results are summarized as follows : 1) In case of secondary superheater tube, the fractograph of dimple is observed at the concentration of $H_2SO_4$-5%. When the concentration of $H_2SO_4$ is above 10%, the fracture mode is shifted from a transgranular fracture to an quasi-intergranular fracture according to the increment of concentration. 2) In the relationship between [$\Delta$DBTT]$_sp$ and SCC susceptibility, it is confirmed that the greater material degradation degree is, the higher SCC susceptibility is. In addition, it can be known that SP test is useful test method to evaluate SCC susceptibility for high temperature structural components. 3) When [$\Delta$DBTT]$_sp$ is above 17$17^{\circ}C$ the SCC fracture behavior is definitely observed with SCC susceptibility of above 0.4.