• Title/Summary/Keyword: Correlation-based Feature Selection

Search Result 55, Processing Time 0.027 seconds

Analyzing empirical performance of correlation based feature selection with company credit rank score dataset - Emphasis on KOSPI manufacturing companies -

  • Nam, Youn Chang;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.63-71
    • /
    • 2016
  • This paper is about applying efficient data mining method which improves the score calculation and proper building performance of credit ranking score system. The main idea of this data mining technique is accomplishing such objectives by applying Correlation based Feature Selection which could also be used to verify the properness of existing rank scores quickly. This study selected 2047 manufacturing companies on KOSPI market during the period of 2009 to 2013, which have their own credit rank scores given by NICE information service agency. Regarding the relevant financial variables, total 80 variables were collected from KIS-Value and DART (Data Analysis, Retrieval and Transfer System). If correlation based feature selection could select more important variables, then required information and cost would be reduced significantly. Through analysis, this study show that the proposed correlation based feature selection method improves selection and classification process of credit rank system so that the accuracy and credibility would be increased while the cost for building system would be decreased.

A Study on the prediction of BMI(Benthic Macroinvertebrate Index) using Machine Learning Based CFS(Correlation-based Feature Selection) and Random Forest Model (머신러닝 기반 CFS(Correlation-based Feature Selection)기법과 Random Forest모델을 활용한 BMI(Benthic Macroinvertebrate Index) 예측에 관한 연구)

  • Go, Woo-Seok;Yoon, Chun Gyeong;Rhee, Han-Pil;Hwang, Soon-Jin;Lee, Sang-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.5
    • /
    • pp.425-431
    • /
    • 2019
  • Recently, people have been attracting attention to the good quality of water resources as well as water welfare. to improve the quality of life. This study is a papers on the prediction of benthic macroinvertebrate index (BMI), which is a aquatic ecological health, using the machine learning based CFS (Correlation-based Feature Selection) method and the random forest model to compare the measured and predicted values of the BMI. The data collected from the Han River's branch for 10 years are extracted and utilized in 1312 data. Through the utilized data, Pearson correlation analysis showed a lack of correlation between single factor and BMI. The CFS method for multiple regression analysis was introduced. This study calculated 10 factors(water temperature, DO, electrical conductivity, turbidity, BOD, $NH_3-N$, T-N, $PO_4-P$, T-P, Average flow rate) that are considered to be related to the BMI. The random forest model was used based on the ten factors. In order to prove the validity of the model, $R^2$, %Difference, NSE (Nash-Sutcliffe Efficiency) and RMSE (Root Mean Square Error) were used. Each factor was 0.9438, -0.997, and 0,992, and accuracy rate was 71.6% level. As a result, These results can suggest the future direction of water resource management and Pre-review function for water ecological prediction.

Study on Correlation-based Feature Selection in an Automatic Quality Inspection System using Support Vector Machine (SVM) (SVM 기반 자동 품질검사 시스템에서 상관분석 기반 데이터 선정 연구)

  • Song, Donghwan;Oh, Yeong Gwang;Kim, Namhun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.6
    • /
    • pp.370-376
    • /
    • 2016
  • Manufacturing data analysis and its applications are getting a huge popularity in various industries. In spite of the fast advancement in the big data analysis technology, however, the manufacturing quality data monitored from the automated inspection system sometimes is not reliable enough due to the complex patterns of product quality. In this study, thus, we aim to define the level of trusty of an automated quality inspection system and improve the reliability of the quality inspection data. By correlation analysis and feature selection, this paper presents a method of improving the inspection accuracy and efficiency in an SVM-based automatic product quality inspection system using thermal image data in an auto part manufacturing case. The proposed method is implemented in the sealer dispensing process of the automobile manufacturing and verified by the analysis of the optimal feature selection from the quality analysis results.

Gait-Based Gender Classification Using a Correlation-Based Feature Selection Technique

  • Beom Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.55-66
    • /
    • 2024
  • Gender classification techniques have received a lot of attention from researchers because they can be used in various fields such as forensics, surveillance systems, and demographic studies. As previous studies have shown that there are distinctive features between male and female gait, various techniques have been proposed to classify gender from three dimensional(3-D) gait data. However, some of the gait features extracted from 3-D gait data using existing techniques are similar or redundant to each other or do not help in gender classification. In this study, we propose a method to select features that are useful for gender classification using a correlation-based feature selection technique. To demonstrate the effectiveness of the proposed feature selection technique, we compare the performance of gender classification models before and after applying the proposed feature selection technique using a 3-D gait dataset available on the Internet. Eight machine learning algorithms applicable to binary classification problems were utilized in the experiments. The experimental results show that the proposed feature selection technique can reduce the number of features by 22, from 82 to 60, while maintaining the gender classification performance.

Hybrid Feature Selection Method Based on Genetic Algorithm for the Diagnosis of Coronary Heart Disease

  • Wiharto, Wiharto;Suryani, Esti;Setyawan, Sigit;Putra, Bintang PE
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • Coronary heart disease (CHD) is a comorbidity of COVID-19; therefore, routine early diagnosis is crucial. A large number of examination attributes in the context of diagnosing CHD is a distinct obstacle during the pandemic when the number of health service users is significant. The development of a precise machine learning model for diagnosis with a minimum number of examination attributes can allow examinations and healthcare actions to be undertaken quickly. This study proposes a CHD diagnosis model based on feature selection, data balancing, and ensemble-based classification methods. In the feature selection stage, a hybrid SVM-GA combined with fast correlation-based filter (FCBF) is used. The proposed system achieved an accuracy of 94.60% and area under the curve (AUC) of 97.5% when tested on the z-Alizadeh Sani dataset and used only 8 of 54 inspection attributes. In terms of performance, the proposed model can be placed in the very good category.

Feature Selection for Classification of Mass Spectrometric Proteomic Data Using Random Forest (단백체 스펙트럼 데이터의 분류를 위한 랜덤 포리스트 기반 특성 선택 알고리즘)

  • Ohn, Syng-Yup;Chi, Seung-Do;Han, Mi-Young
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.139-147
    • /
    • 2013
  • This paper proposes a novel method for feature selection for mass spectrometric proteomic data based on Random Forest. The method includes an effective preprocessing step to filter a large amount of redundant features with high correlation and applies a tournament strategy to get an optimal feature subset. Experiments on three public datasets, Ovarian 4-3-02, Ovarian 7-8-02 and Prostate shows that the new method achieves high performance comparing with widely used methods and balanced rate of specificity and sensitivity.

A Study on Predicting TDI(Trophic Diatom Index) in tributaries of Han river basin using Correlation-based Feature Selection technique and Random Forest algorithm (Correlation-based Feature Selection 기법과 Random Forest 알고리즘을 이용한 한강유역 지류의 TDI 예측 연구)

  • Kim, Minkyu;Yoon, Chun Gyeong;Rhee, Han-Pil;Hwang, Soon-Jin;Lee, Sang-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.5
    • /
    • pp.432-438
    • /
    • 2019
  • The purpose of this study is to predict Trophic Diatom Index (TDI) in tributaries of the Han River watershed using the random forest algorithm. The one year (2017) and supplied aquatic ecology health data were used. The data includes water quality(BOD, T-N, $NH_3-N$, T-P, $PO_4-P$, water temperature, DO, pH, conductivity, turbidity), hydraulic factors(water width, average water depth, average velocity of water), and TDI score. Seven factors including water temperature, BOD, T-N, $NH_3-N$, T-P, $PO_4-P$, and average water depth are selected by the Correlation Feature Selection. A TDI prediction model was generated by random forest using the seven factors. To evaluate this model, 2017 data set was used first. As a result of the evaluation, $R^2$, % Difference, NSE(Nash-Sutcliffe Efficiency), RMSE(Root Mean Square Error) and accuracy rate show that this model is compatible with predicting TDI. To be more concrete, $R^2$ is 0.93, % Difference is -0.37, NSE is 0.89, RMSE is 8.22 and accuracy rate is 70.4%. Also, additional evaluation using data set more than 17 times the measured point was performed. The results were similar when the 2017 data set were used. The Wilcoxon Signed Ranks Test shows there was no statistically significant difference between actual and predicted data for the 2017 data set. These results can specify the elements which probably affect aquatic ecology health. Also, these will provide direction relative to water quality management for a watershed that must be continuously preserved.

Category Factor Based Feature Selection for Document Classification

  • Kang Yun-Hee
    • International Journal of Contents
    • /
    • v.1 no.2
    • /
    • pp.26-30
    • /
    • 2005
  • According to the fast growth of information on the Internet, it is becoming increasingly difficult to find and organize useful information. To reduce information overload, it needs to exploit automatic text classification for handling enormous documents. Support Vector Machine (SVM) is a model that is calculated as a weighted sum of kernel function outputs. This paper describes a document classifier for web documents in the fields of Information Technology and uses SVM to learn a model, which is constructed from the training sets and its representative terms. The basic idea is to exploit the representative terms meaning distribution in coherent thematic texts of each category by simple statistics methods. Vector-space model is applied to represent documents in the categories by using feature selection scheme based on TFiDF. We apply a category factor which represents effects in category of any term to the feature selection. Experiments show the results of categorization and the correlation of vector length.

  • PDF

Compositional Feature Selection and Its Effects on Bandgap Prediction by Machine Learning (기계학습을 이용한 밴드갭 예측과 소재의 조성기반 특성인자의 효과)

  • Chunghee Nam
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.164-174
    • /
    • 2023
  • The bandgap characteristics of semiconductor materials are an important factor when utilizing semiconductor materials for various applications. In this study, based on data provided by AFLOW (Automatic-FLOW for Materials Discovery), the bandgap of a semiconductor material was predicted using only the material's compositional features. The compositional features were generated using the python module of 'Pymatgen' and 'Matminer'. Pearson's correlation coefficients (PCC) between the compositional features were calculated and those with a correlation coefficient value larger than 0.95 were removed in order to avoid overfitting. The bandgap prediction performance was compared using the metrics of R2 score and root-mean-squared error. By predicting the bandgap with randomforest and xgboost as representatives of the ensemble algorithm, it was found that xgboost gave better results after cross-validation and hyper-parameter tuning. To investigate the effect of compositional feature selection on the bandgap prediction of the machine learning model, the prediction performance was studied according to the number of features based on feature importance methods. It was found that there were no significant changes in prediction performance beyond the appropriate feature. Furthermore, artificial neural networks were employed to compare the prediction performance by adjusting the number of features guided by the PCC values, resulting in the best R2 score of 0.811. By comparing and analyzing the bandgap distribution and prediction performance according to the material group containing specific elements (F, N, Yb, Eu, Zn, B, Si, Ge, Fe Al), various information for material design was obtained.

A Feature Selection Method Based on Fuzzy Cluster Analysis (퍼지 클러스터 분석 기반 특징 선택 방법)

  • Rhee, Hyun-Sook
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.135-140
    • /
    • 2007
  • Feature selection is a preprocessing technique commonly used on high dimensional data. Feature selection studies how to select a subset or list of attributes that are used to construct models describing data. Feature selection methods attempt to explore data's intrinsic properties by employing statistics or information theory. The recent developments have involved approaches like correlation method, dimensionality reduction and mutual information technique. This feature selection have become the focus of much research in areas of applications with massive and complex data sets. In this paper, we provide a feature selection method considering data characteristics and generalization capability. It provides a computational approach for feature selection based on fuzzy cluster analysis of its attribute values and its performance measures. And we apply it to the system for classifying computer virus and compared with heuristic method using the contrast concept. Experimental result shows the proposed approach can give a feature ranking, select the features, and improve the system performance.