• Title/Summary/Keyword: Correlation of a current-magnetic field

Search Result 16, Processing Time 0.016 seconds

Analysis of Worker Exposure Space according to Distribution of Electromagnetic Field of Generator (발전기의 전자기장 분포 특성에 따른 작업자 노출공간 분석)

  • Seong, Minyoung;Kim, Doo-Hyun;Kim, Seungtae
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.20-28
    • /
    • 2021
  • With an increase in the commercialization of electricity, and the development of advanced and large electric devices and various wireless radio wave services, concerns over the effects of electromagnetic fields on human health have increased. Accordingly, the World Health Organization encouraged the development of international standards by establishing the 'International Electromagnetic Fields Project' in 1996 based on studies on the harmful effects of electromagnetic fields on the human body. Moreover, the National Institute of Environmental Health Sciences (NIEHS) classified electromagnetic fields as possible carcinogens under Group 2B category, even though they have been found to have a weak correlation with those effects on human health. Mid-to-large-sized electric facilities used at industrial sites mostly adopt a commercial frequency of 60 Hz, and workers handling these facilities are exposed to such extremely low frequency (ELF) fields for a long time. A previous study suggested that exposure to ELF electromagnetic fields with frequency ranges from 0 to 300 Hz, even for a short time, at densities higher than 100 μT may have harmful effects on human body as it affects the activation of nerve cells in the central nervous system by inducing an electric field and current and stimulating muscles and the nervous system in the body. Such studies, however, focused on home appliances used by ordinary people, and research on facilities utilizing high-capacity current and operated by workers at industrial sites is lacking. Therefore, in this study, a 3000 kilowatt generator, which is a high-capacity electric facility employed at industrial sites, was investigated, and the size of the magnetic fields generated during its no-load and high-load operations per distance to produce a map was measured to reveal spots deemed hazardous according to domestic and international exposure standards. The findings of this study is expected to alleviate workers' anxiety about the harmful effects of magnetic fields on their body and to minimize the level of exposure during operations.

Physical ppropperties in Rare-earth Compounds

  • Takashi, Suzuki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.18-18
    • /
    • 1998
  • F First I will introduce our works how to improve the crystal growth t technique for Rare earth pnictides and chalcogenides. All these substances h have hi양1 vapor pressure and high melting print up to 3$\alpha$)()C. 까len we employ m the tungsten or molybden crucibles and enclose the sample by 빼e welding of m the lid with high current electron beam. We cannot elevate the temperature up t to 3$\alpha$)()C without suitable radiation shield because rate of radiation loss r rapidly increase in such a high temperature regions. There were no good r radiation shield but we discovered that the p-BN could work as an excellent r radiation shield after checking of the many substances. S Secondly I will show several interesting and unusual 뻐ysical properties of obtained crystals under high magnetic field, hi양1 pressure and also i including angle resolve photoemission spectroscopy. I will stress the p properties of the low carrier concentration with strong correlation on C댐, U USb and Yb4As3

  • PDF

Characteristics and Geoeffectiveness of Small-scale Magnetic Flux Ropes in the Solar Wind

  • Kim, Myeong Joon;Park, Kyung Sun;Lee, Dae-Young;Choi, Cheong-Rim;Kim, Rok Soon;Cho, Kyungsuk;Choi, Kyu-Cheol;Kim, Jaehun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.237-244
    • /
    • 2017
  • Magnetic flux ropes, often observed during intervals of interplanetary coronal mass ejections, have long been recognized to be critical in space weather. In this work, we focus on magnetic flux rope structure but on a much smaller scale, and not necessarily related to interplanetary coronal mass ejections. Using near-Earth solar wind advanced composition explorer (ACE) observations from 1998 to 2016, we identified a total of 309 small-scale magnetic flux ropes (SMFRs). We compared the characteristics of identified SMFR events with those of normal magnetic cloud (MC) events available from the existing literature. First, most of the MCs and SMFRs have similar values of accompanying solar wind speed and proton densities. However, the average magnetic field intensity of SMFRs is weaker (~7.4 nT) than that of MCs (~10.6 nT). Also, the average duration time and expansion speed of SMFRs are ~2.5 hr and 2.6 km/s, respectively, both of which are smaller by a factor of ~10 than those of MCs. In addition, we examined the geoeffectiveness of SMFR events by checking their correlation with magnetic storms and substorms. Based on the criteria Sym-H < -50 nT (for identification of storm occurrence) and AL < -200 nT (for identification of substorm occurrence), we found that for 88 SMFR events (corresponding to 28.5 % of the total SMFR events), substorms occurred after the impact of SMFRs, implying a possible triggering of substorms by SMFRs. In contrast, we found only two SMFRs that triggered storms. We emphasize that, based on a much larger database than used in previous studies, all these previously known features are now firmly confirmed by the current work. Accordingly, the results emphasize the significance of SMFRs from the viewpoint of possible triggering of substorms.

A 3-D Steady-State Analysis of Thermal Behavior in EHV GIS Busbar

  • Lei, Jin;Zhong, Jian-ying;Wu, Shi-jin;Wang, Zhen;Guo, Yu-jing;Qin, Xin-yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.781-789
    • /
    • 2016
  • Busbar has been used as electric conductor within extra high voltage (EHV) gas insulated switchgear (GIS), which makes EHV GIS higher security, smaller size and lower cost. However, the main fault of GIS is overheating of busbar connection parts, circuit breaker and isolating switch contact parts, which has been already restricting development of GIS to a large extent. In this study, a coupled magneto-flow-thermal analysis is used to investigate the thermal properties of GIS busbar in steady-state. A three-dimensional (3-D) finite element model (FEM) is built to calculate multiphysics fields including electromagnetic field, flow field and thermal field in steady-state. The influences of current on the magnetic flux density, flow velocity and heat distribution has been investigated. Temperature differences of inner wall and outer wall are investigated for busbar tank and conducting rod. Considering the end effect in the busbar, temperature rise difference is compared between end sections and the middle section. In order to obtain better heat dissipation effect, diameters of conductor and tank are optimized based on temperature rise simulation results. Temperature rise tests have been done to validate the 3-D simulation model, which is observed a good correlation with the simulation results. This study provides technical support for optimized structure of the EHV GIS busbar.

${T_2}weighted$- Half courier Echo Planar Imaging

  • 김치영;김휴정;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.5 no.1
    • /
    • pp.57-65
    • /
    • 2001
  • Purpose : $T_2$-weighted half courier Echo Planar Imaging (T2HEPI) method is proposed to reduce measurement time of existing EPI by a factor of 2. In addition, high $T_2$ contrast is obtained for clinical applications. High resolution single-shot EPI images with $T_2$ contrast are obtained with $128{\times}128$ matrix size by the proposed method. Materials and methods : In order to reduce measurement time in EPI, half courier space is measured, and rest of half courier data is obtained by conjugate symmetric filling. Thus high resolution single shot EPI image with $128{\times}128$ matrix size is obtained with 64 echoes. By the arrangement of phase encoding gradients, high $T_2$ weighted images are obtained. The acquired data in k-space are shifted if there exists residual gradient field due to eddy current along phase encoding gradient, which results in a serious problem in the reconstructed image. The residual field is estimated by the correlation coefficient between the echo signal for dc and the corresponding reference data acquired during the pre-scan. Once the residual gradient field is properly estimated, it can be removed by the adjustment of initial phase encoding gradient field between $70^{\circ}$ and $180^{\circ}$ rf pulses. Results : The suggested T2EPl is implemented in a 1.0 Tela whole body MRI system. Experiments are done with the effective echo times of 72ms and 96ms with single shot acquisitions. High resolution($128{\times}128$) volunteer head images with high $T_2$ contrast are obtained in a single scan by the proposed method. Conclusion : Using the half courier technique, higher resolution EPI images are obtained with matrix size of $128{\times}128$ in a single scan. Furthermore $T_2$ contrast is controlled by the effective echo time. Since the suggested method can be implemented by software alone (pulse sequence and corresponding tuning and reconstruction algorithms) without addition of special hardware, it can be widely used in existing MRI systems.

  • PDF

A Study on the Detection Characteristics of the Magneto-Plethysmography According to Fluid Properties (유체의 성질에 따른 자계용적맥파의 검출 특성에 관한 연구)

  • Kim, Sang-Min;Lee, Kang-Hwi;Lee, Seong-Su;Lee, Hyeok-Jae;Lee, Byoung-Hun;Kim, Kyeoung-Seop;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.946-953
    • /
    • 2018
  • Photo-plethysmography (PPG), which measures changes in the peripheral blood flow of a human body using difference in absorption rate of light, is a measurement method that is studied and used in clinical and various applications due to its simple circuit configuration and measurement convenience. Magneto-plethysmography (MPG), which is newly developed by our team, is a method of measuring changes in the conductivity of biological tissues by using a eddy current induced by a time-varying magnetic field, and is not subject to optical interference. In this study, we investigated the detection characteristics of MPG according to the change of the conductivity of the object and fluid to be measured by simultaneously measuring PPG and MPG. In order to control the speed of fluid known in advance, a blood flow simulator was implemented and used. The fluid used in the experiment was general mineral water and physiological saline (0.9% NaCl) solution. Experimental results show that the amplitude change of the measured PPG was 0.3% in normal water and saline solution, and that of MPG was 77.3%. Therefore, it is considered that the magneto-plethysmography (MPG) has a strong correlation with the conductivity of the fluid.