• Title/Summary/Keyword: Correlation of Pixels

Search Result 189, Processing Time 0.028 seconds

RPC Correction of KOMPSAT-3A Satellite Image through Automatic Matching Point Extraction Using Unmanned AerialVehicle Imagery (무인항공기 영상 활용 자동 정합점 추출을 통한 KOMPSAT-3A 위성영상의 RPC 보정)

  • Park, Jueon;Kim, Taeheon;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1135-1147
    • /
    • 2021
  • In order to geometrically correct high-resolution satellite imagery, the sensor modeling process that restores the geometric relationship between the satellite sensor and the ground surface at the image acquisition time is required. In general, high-resolution satellites provide RPC (Rational Polynomial Coefficient) information, but the vendor-provided RPC includes geometric distortion caused by the position and orientation of the satellite sensor. GCP (Ground Control Point) is generally used to correct the RPC errors. The representative method of acquiring GCP is field survey to obtain accurate ground coordinates. However, it is difficult to find the GCP in the satellite image due to the quality of the image, land cover change, relief displacement, etc. By using image maps acquired from various sensors as reference data, it is possible to automate the collection of GCP through the image matching algorithm. In this study, the RPC of KOMPSAT-3A satellite image was corrected through the extracted matching point using the UAV (Unmanned Aerial Vehichle) imagery. We propose a pre-porocessing method for the extraction of matching points between the UAV imagery and KOMPSAT-3A satellite image. To this end, the characteristics of matching points extracted by independently applying the SURF (Speeded-Up Robust Features) and the phase correlation, which are representative feature-based matching method and area-based matching method, respectively, were compared. The RPC adjustment parameters were calculated using the matching points extracted through each algorithm. In order to verify the performance and usability of the proposed method, it was compared with the GCP-based RPC correction result. The GCP-based method showed an improvement of correction accuracy by 2.14 pixels for the sample and 5.43 pixelsfor the line compared to the vendor-provided RPC. In the proposed method using SURF and phase correlation methods, the accuracy of sample was improved by 0.83 pixels and 1.49 pixels, and that of line wasimproved by 4.81 pixels and 5.19 pixels, respectively, compared to the vendor-provided RPC. Through the experimental results, the proposed method using the UAV imagery presented the possibility as an alternative to the GCP-based method for the RPC correction.

A Study on the Generation of Digital Elevation Model from SPOT Satellite Data (SPOT 위성데이타를 이용한 수치표고모델 생성에 관한 연구)

  • 안철호;안기원;박병욱
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 1991
  • This study aims to develop techniques for generating Digital Elevation Model(DEM) from SPOT Computer Compatible Tape(CCT) data, so as to present an effective way of generation of DEM for large area. As the first phase of extracting ground heights from SPOT stereo digital data, the bundle adjustment technique was used to determine the satellite exterior orientation parameters. Because SPOT data has the characteristics of multiple perspective projection, exterior orientation Parameters were modelled as a function of scan lines. In the second phase, a normalized cross correlation matching technique was applied to search for the conjugate pixels ill stereo pairs. The preliminary study showed that the matching window size of 13$\times$13 was adequate. After image coordinates of the conjugate pixels were determined by the matching technique, the ground coordinates of the corresponding pixels were calculated by the space intersection method. Then DEM was generated by interpolations. In addtion an algorithm for the elimination of abnormal elevation was developed and applied. The algorithm was very effective to improve the accuracy of the generated DEM.

  • PDF

Life Risk Assessment of Landslide Disaster in Jinbu Area Using Logistic Regression Model (로지스틱 회귀분석모델을 활용한 평창군 진부 지역의 산사태 재해의 인명 위험 평가)

  • Rahnuma, Bintae Rashid Urmi;Al, Mamun;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.2
    • /
    • pp.65-80
    • /
    • 2020
  • This paper deals with risk assessment of life in a landslide-prone area by a GIS-based modeling method. Landslide susceptibility maps can provide a probability of landslide prone areas to mitigate or proper control this problems and to take any development plan and disaster management. A landslide inventory map of the study area was prepared based on past historical information and aerial photography analysis. A total of 550 landslides have been counted at the whole study area. The extracted landslides were randomly selected and divided into two different groups, 50% of the landslides were used for model calibration and the other were used for validation purpose. Eleven causative factors (continuous and thematic) such as slope, aspect, curvature, topographic wetness index, elevation, forest type, forest crown density, geology, land-use, soil drainage, and soil texture were used in hazard analysis. The correlation between landslides and these factors, pixels were divided into several classes and frequency ratio was also extracted. Eventually, a landslide susceptibility map was constructed using a logistic regression model based on entire events. Moreover, the landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract a success rate curve. Based on the results, logistic regression produced an 85.18% accuracy, so we believed that the model was reliable and acceptable for the landslide susceptibility analysis on the study area. In addition, for risk assessment, vulnerability scale were added for social thematic data layer. The study area predictive landslide affected pixels 2,000 and 5,000 were also calculated for making a probability table. In final calculation, the 2,000 predictive landslide affected pixels were assumed to run. The total population causalities were estimated as 7.75 person that was relatively close to the actual number published in Korean Annual Disaster Report, 2006.

Adaptive weight approach for stereo matching (적응적 가중치를 이용한 스테레오 정합 기법)

  • Yoon, Hee-Joo;Hwang, Young-Chul;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.08a
    • /
    • pp.73-76
    • /
    • 2008
  • We present a area-based method for stereo matching using varying weights. A central problem in a area-based stereo matching is different result from selecting a window size. Most of the previous window-based methods iteratively update windows. However, the iterative methods very sensitive the initial disparity estimation and are computationally expensive. To resolve this problem, we proposed a new function to assign weights to pixels using features. To begin with, we extract features in a given stereo images based on edge. We adjust the weights of the pixels in a given window based on correlation of the stereo images. Then, we match pixels in a given window between the reference and target images of a stereo pair. The proposed method is compared to existing matching strategies using both synthetic and real images. The experimental results show the improved accuracy of the proposed method.

  • PDF

A Prioritized Transmission Scheme for Three-Dimensional Integral Imaging (3차원 집적 영상을 위한 우선순위 전송 기법)

  • Cho, Myungjin;Choi, Hyun-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.5
    • /
    • pp.447-455
    • /
    • 2014
  • In this paper, we consider a representative integral imaging method in glasses-free 3D image processing and propose a prioritized transmission scheme for guaranteeing a received video quality in error-prone environments. According to the correlation of pixels consisting of each voxel of integral image, we set the priority differently and apply the modulation level according to this priority value. That is to say, the corresponding pixels with small variance are set to a high priority and transmitted by using a low level modulation that is robust under transmission errors, but the corresponding pixels with greater variance are set to a lower priority and transmitted by using a high level modulation that has a high bit error rate but fast transmission rate. Result shows that the proposed scheme that applies the error-robust modulation level to the important image bit stream with the high priority improves the peak to sidelobe ratio (PSR) of the received 3D image, compared with a typical method that use the same modulation level without distinction of priorities.

Camera Modelling of Linear Pushbroom Images - Quality analysis of various algorithms (대표적 위성영상 카메라 모델링 알고리즘들의 비교연구)

  • 김태정;김승범;신동석
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.73-86
    • /
    • 2000
  • Commonly-used methods for camera modelling of pushbroom images were implemented and their performances were assessed. The models include Vector Propagation) model, Gugan and Downman(GD)'s model, Orun and Natarajan(ON)'s model, and Direct Linear Transformation(DLT) model The models were tested on a SPOT full-scene over Seoul. The number of ground control points(GCP) used range from 1 to 23. For less than 6 GCPs all other models fail except VP, with VP's accuracy being 2.7 pixels. With mode than 6 GCPs ON shows the best accuracy with 1pixel accuracy while the accuracy of VP is 1.5 pixels. GD fails in most cases due to the correlation among model parameters. The accuracy of DLT does not converge but fluctuates between 1 and 4 pixels subject to GCPs used. VP has an advantage in that its results can be used for the estimation of satellite orbit. Unresolved topics are: to remove errors in GCPs from the aforementioned accuracy value; to improve the performance of VP.

Generation of Ortho-Image of Close-Range Photographs by Digital Image Processing Technique (수치화상처리기법을 이용한 지상사진의 정사투영화상의 작성)

  • Ahn, Ki Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.191-199
    • /
    • 1993
  • Investigation is given to the detailed procedure of a computer assisted automatic technique for ortho-image generation from digital stereo image data of close-range photographs scanned by the CCD camera scanner. After rectification of geometric scanning errors, the bundle adjustment technique was used to determine the exterior orientation parameters of terrestrial camera. An automatic correlation matching technique was applied to search for the conjugate pixels in digital stereo pairs. And the 3-dimensional coordinates of the corresponding pixels were calculated by the space intersection method. For the generation of ortho-image from the calculated coordinates and right image data values, inverse-weighted-distance average method was used. And the accuracy of the resulting ortho-image was checked by comparing its image coordinates with there corresponding ground coordinates for the check points.

  • PDF

Normalized Cross Correlation-based Multiview background Subtraction for 3D Object Reconstruction (3차원 객체 복원을 위한 정규 상관도 기반 다중 시점 배경 차분 기법)

  • Paeng, Kyunghyun;Hwang, Sung Soo;Kim, Hee-Dong;Kim, Sujung;Yoo, Jisung;Kim, Seong Dae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.228-237
    • /
    • 2013
  • In this paper, we propose a normalized cross correlation(NCC)-based multiview background subtraction method which is robust when an object and background have similar color. When the background of the capturing environment is not artificially composed, the regions in the background images which would be occluded by an object tends to have difference colors. The colors of those regions, however, becomes similar when an object enters the capturing environment. Based on this assumption, this paper proposes a concept of GoNCC(Graph of Normalized Cross Correlation). GoNCC is the distribution of NCC between a pixel in an image and pixels related by epipolar constraints with the pixel. The proposed multiview background subtraction method is performed by comparing GoNCC of the current images with the background images. To reduce computational complexity, we perform multiview background subtraction only to the pixels undetermined by single view background subtraction. Experimental results show that the proposed method is more robust to color similarity between an object and background than a single-view background subtraction method and a previous multiview background subtraction method.

A Novel Horizontal Disparity Estimation Algorithm Using Stereoscopic Camera Rig

  • Ramesh, Rohit;Shin, Heung-Sub;Jeong, Shin-Il;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.1
    • /
    • pp.83-88
    • /
    • 2011
  • Abstract. Image segmentation is always a challenging task in computer vision as well as in pattern recognition. Nowadays, this method has great importance in the field of stereo vision. The disparity information extracting from the binocular image pairs has essential relevance in the fields like Stereoscopic (3D) Imaging Systems, Virtual Reality and 3D Graphics. The term 'disparity' represents the horizontal shift between left camera image and right camera image. Till now, many methods are proposed to visualize or estimate the disparity. In this paper, we present a new technique to visualize the horizontal disparity between two stereo images based on image segmentation method. The process of comparing left camera image with right camera image is popularly known as 'Stereo-Matching'. This method is used in the field of stereo vision for many years and it has large contribution in generating depth and disparity maps. Correlation based stereo-matching are used most of the times to visualize the disparity. Although, for few stereo image pairs it is easy to estimate the horizontal disparity but in case of some other stereo images it becomes quite difficult to distinguish the disparity. Therefore, in order to visualize the horizontal disparity between any stereo image pairs in more robust way, a novel stereo-matching algorithm is proposed which is named as "Quadtree Segmentation of Pixels Disparity Estimation (QSPDE)".

Randomized Block Size (RBS) Model for Secure Data Storage in Distributed Server

  • Sinha, Keshav;Paul, Partha;Amritanjali, Amritanjali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4508-4530
    • /
    • 2021
  • Today distributed data storage service are being widely used. However lack of proper means of security makes the user data vulnerable. In this work, we propose a Randomized Block Size (RBS) model for secure data storage in distributed environments. The model work with multifold block sizes encrypted with the Chinese Remainder Theorem-based RSA (C-RSA) technique for end-to-end security of multimedia data. The proposed RBS model has a key generation phase (KGP) for constructing asymmetric keys, and a rand generation phase (RGP) for applying optimal asymmetric encryption padding (OAEP) to the original message. The experimental results obtained with text and image files show that the post encryption file size is not much affected, and data is efficiently encrypted while storing at the distributed storage server (DSS). The parameters such as ciphertext size, encryption time, and throughput have been considered for performance evaluation, whereas statistical analysis like similarity measurement, correlation coefficient, histogram, and entropy analysis uses to check image pixels deviation. The number of pixels change rate (NPCR) and unified averaged changed intensity (UACI) were used to check the strength of the proposed encryption technique. The proposed model is robust with high resilience against eavesdropping, insider attack, and chosen-plaintext attack.