• Title/Summary/Keyword: Correlation mapping

Search Result 282, Processing Time 0.025 seconds

The Relationship between Weather and Meal choices: A Case Study of Restaurants and Cafés on Korean University Campus (날씨와 식사 선택의 관계: 한국대학 캠퍼스 내 식당과 카페의 사례연구)

  • Punyotai Thamjamrassri;Yong-Ki Lee
    • Journal of Service Research and Studies
    • /
    • v.12 no.4
    • /
    • pp.82-93
    • /
    • 2022
  • The food service industry is a major driver of global sustainable food consumption. By understanding food consumption behavior, restaurant managers can forecast demands and reduce pre-consumer food waste. This study investigates the relationship between influencing factors and the number of customers at restaurants and cafés. These factors are weather-related factors, including rain and temperature, and school-related factors, including exams and the day of the week. Based on these four factors, 24 possible combinations were created. Three representtive days were chosen for each weekday combination. Besides, one representative day was chosen for each weekend combination. In total, 48 days were sampled throughout the year. Customer data were collected from six restaurants and cafes on a Korean university campus. Conjoint analysis was used to determine the relative importance of each variable to customer numbers. Following that, utility scores were standardized and mapped to determine the best condition when the number of customers was at its peak. In addition, each store's sales were compared using Pearson's Correlation Coefficient. The findings support that temperature and rain influences are correlated with the number of customers. Furthermore, we discovered that temperature was far more significant than rain in determining the number of customers. The paper discusses the implications of weather to forecast food and beverage demand and predict meal choices.

Human Recombinant Apyrase Therapy Protects Against Myocardial Ischemia/Reperfusion Injury and Preserves Left Ventricular Systolic Function in Rats, as Evaluated by 7T Cardiovascular Magnetic Resonance Imaging

  • Ziqian Xu;Wei Chen;Ruzhi Zhang;Lei Wang;Ridong Chen;Jie Zheng;Fabao Gao
    • Korean Journal of Radiology
    • /
    • v.21 no.6
    • /
    • pp.647-659
    • /
    • 2020
  • Objective: The occurrence of intramyocardial hemorrhage (IMH) and microvascular obstruction (MVO) in myocardial infarction (MI), known as severe ischemia/reperfusion injury (IRI), has been associated with adverse remodeling. APT102, a soluble human recombinant ecto-nucleoside triphosphate diphosphohydrolase-1, can hydrolyze extracellular nucleotides to attenuate their prothrombotic and proinflammatory effects. The purpose of this study was to temporally evaluate the therapeutic effect of APT102 on IRI in rats and to elucidate the evolution of IRI in the acute stage using cardiovascular magnetic resonance imaging (CMRI). Materials and Methods: Fifty-four rats with MI, induced by ligation of the origin of the left anterior descending coronary artery for 60 minutes, were randomly divided into the APT102 (n = 27) or control (n = 27) group. Intravenous infusion of APT102 (0.3 mg/kg) or placebo was administered 15 minutes before reperfusion, and then 24 hours, 48 hours, 72 hours, and on day 4 after reperfusion. CMRI was performed at 24 hours, 48 hours, 72 hours, and on day 5 post-reperfusion using a 7T system and the hearts were collected for histopathological examination. Cardiac function was quantified using cine imaging and IMH/edema using T2 mapping, and infarct/MVO using late gadolinium enhancement. Results: The extent of infarction (p < 0.001), edema (p < 0.001), IMH (p = 0.013), and MVO (p = 0.049) was less severe in the APT102 group than in the control group. IMH size at 48 hours was significantly greater than that at 24 hours, 72 hours, and 5 days after reperfusion (all p < 0.001). The left ventricular ejection fraction (LVEF) was significantly greater in the APT102 group than in the control group (p = 0.006). There was a negative correlation between LVEF and IMH (r = -0.294, p = 0.010) and a positive correlation between IMH and MVO (r = 0.392, p < 0.001). Conclusion: APT102 can significantly alleviate damage to the ischemic myocardium and microvasculature. IMH size peaked at 48 hours post reperfusion and IMH is a downstream consequence of MVO. IMH may be a potential therapeutic target to prevent adverse remodeling in MI.

QTL Analysis to Improve and Diversify the Grain Shape of Rice Cultivars in Korea, Using the Long Grain japonica Cultivar, Langi (초장립종 벼를 이용한 입형 관련 QTL 분석 및 국내 벼 품종 입형 개선 연구)

  • Kim, Suk-Man;Park, Hyun-Su;Lee, Chang-Min;Baek, Man-Kee;Cho, Young-Chan;Suh, Jung-Pil;Jeong, Oh-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.303-313
    • /
    • 2020
  • Rice grain shape is one of the key components of grain yield and market value. An understanding of the genetic basis of the variation in grain shape could be used to improve grain shape. In this study, we developed a total of 265 F2 individuals derived from a cross between japonica cultivars (Josaeng-jado and Langi) and used this population for quantitative trait locus (QLT) analysis. Correlation analysis was performed to identify relationships between grain traits (GL: grain length, GW: grain width, L/W: ratio of length to width, TGW: 1,000 grain weight). The grain shape was positively correlated with GL and TGW, and negatively correlated with GW. In QTL analysis associated with grain shape, one QTL for GL, qGL5, detected on chromosome 5, explained 20.3% of the phenotypic variation (PV), while two QTLs, qGW5 (PV=36.1) and qGW7 (PV=26.1), for GW were identified on chromosomes 5 and 7, respectively. Evaluation of the effects of each of the QTLs on the grain shape in the population showed a significant difference in the grain size in positive lines compared with the lines without the QTLs. According to the QTL combination of the allelic-types, the grain shape of the tested lines varied from semi-round type to long spindle-shaped type. The results of this study extend our knowledge about the genetic pool governing the diversity of grain shape in japonica cultivars and could be used to improve the grain shape of this species through marker-assisted selective breeding in Korea.

Impacts assessment of Climate changes in North Korea based on RCP climate change scenarios II. Impacts assessment of hydrologic cycle changes in Yalu River (RCP 기후변화시나리오를 이용한 미래 북한지역의 수문순환 변화 영향 평가 II. 압록강유역의 미래 수문순환 변화 영향 평가)

  • Jeung, Se Jin;Kang, Dong Ho;Kim, Byung Sik
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.39-50
    • /
    • 2019
  • This study aims to assess the influence of climate change on the hydrological cycle at a basin level in North Korea. The selected model for this study is MRI-CGCM 3, the one used for the Coupled Model Intercomparison Project Phase 5 (CMIP5). Moreover, this study adopted the Spatial Disaggregation-Quantile Delta Mapping (SDQDM), which is one of the stochastic downscaling techniques, to conduct the bias correction for climate change scenarios. The comparison between the preapplication and postapplication of the SDQDM supported the study's review on the technique's validity. In addition, as this study determined the influence of climate change on the hydrological cycle, it also observed the runoff in North Korea. In predicting such influence, parameters of a runoff model used for the analysis should be optimized. However, North Korea is classified as an ungauged region for its political characteristics, and it was difficult to collect the country's runoff observation data. Hence, the study selected 16 basins with secured high-quality runoff data, and the M-RAT model's optimized parameters were calculated. The study also analyzed the correlation among variables for basin characteristics to consider multicollinearity. Then, based on a phased regression analysis, the study developed an equation to calculate parameters for ungauged basin areas. To verify the equation, the study assumed the Osipcheon River, Namdaecheon Stream, Yongdang Reservoir, and Yonggang Stream as ungauged basin areas and conducted cross-validation. As a result, for all the four basin areas, high efficiency was confirmed with the efficiency coefficients of 0.8 or higher. The study used climate change scenarios and parameters of the estimated runoff model to assess the changes in hydrological cycle processes at a basin level from climate change in the Amnokgang River of North Korea. The results showed that climate change would lead to an increase in precipitation, and the corresponding rise in temperature is predicted to cause elevating evapotranspiration. However, it was found that the storage capacity in the basin decreased. The result of the analysis on flow duration indicated a decrease in flow on the 95th day; an increase in the drought flow during the periods of Future 1 and Future 2; and an increase in both flows for the period of Future 3.

PCA­based Waveform Classification of Rabbit Retinal Ganglion Cell Activity (주성분분석을 이용한 토끼 망막 신경절세포의 활동전위 파형 분류)

  • 진계환;조현숙;이태수;구용숙
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.211-217
    • /
    • 2003
  • The Principal component analysis (PCA) is a well-known data analysis method that is useful in linear feature extraction and data compression. The PCA is a linear transformation that applies an orthogonal rotation to the original data, so as to maximize the retained variance. PCA is a classical technique for obtaining an optimal overall mapping of linearly dependent patterns of correlation between variables (e.g. neurons). PCA provides, in the mean-squared error sense, an optimal linear mapping of the signals which are spread across a group of variables. These signals are concentrated into the first few components, while the noise, i.e. variance which is uncorrelated across variables, is sequestered in the remaining components. PCA has been used extensively to resolve temporal patterns in neurophysiological recordings. Because the retinal signal is stochastic process, PCA can be used to identify the retinal spikes. With excised rabbit eye, retina was isolated. A piece of retina was attached with the ganglion cell side to the surface of the microelectrode array (MEA). The MEA consisted of glass plate with 60 substrate integrated and insulated golden connection lanes terminating in an 8${\times}$8 array (spacing 200 $\mu$m, electrode diameter 30 $\mu$m) in the center of the plate. The MEA 60 system was used for the recording of retinal ganglion cell activity. The action potentials of each channel were sorted by off­line analysis tool. Spikes were detected with a threshold criterion and sorted according to their principal component composition. The first (PC1) and second principal component values (PC2) were calculated using all the waveforms of the each channel and all n time points in the waveform, where several clusters could be separated clearly in two dimension. We verified that PCA-based waveform detection was effective as an initial approach for spike sorting method.

  • PDF

Effect of GB 34-GB 39 Electro-acupuncture on Regional Cerebral Blood Flow in Stroke Patients and Normal Volunteers Evaluated by $^{99m}Tc-ECD$ SPECT (양릉천-현종 전침치료가 뇌경색환자 및 정상인의 뇌혈류에 미치는 영향 - SPECT와 SPM을 이용한 연구 -)

  • Han, Jin-An;Jeong, Dong-Won;Bae, Hyung-Sup;Park, Sung-Uk;Jung, Woo-Sang;Park, Jung-Mee;Ko, Chang-Nam;Cho, Ki-Ho;Kim, Young-Suk;Kim, Deok-Yoon;Moon, Sang-Kwan
    • The Journal of Korean Medicine
    • /
    • v.27 no.3 s.67
    • /
    • pp.187-200
    • /
    • 2006
  • Objectives: Acupuncture has been applied in Asia for thousands of years, especially to rehabilitation after stroke. It has been reported that acupuncture increased cerebral blood supply and stimulated the functional activity of brain nerve cells shown by using brain imaging techniques. This study was to evaluate the effect of GB 34-GB 39 electro-acupuncture (EA) on regional cerebral blood flow (rCBF) in stroke patients and normal volunteers using single photon emission computed tomography (SPECT). Methods: The study procedure was divided into two parts: patients and volunteers studies. For the patients study, ten ischemic stroke patients (3 males, 7 females, mean age $68.5{\pm}8.9$ years old) were selected. Baseline brain SPECT was done with triple head gamma camera (MultiSPECT3, Siemens, USA) after intravenous administration of 1,110 MBq of $^{99m}Tc-ECD$. Fifteen-minute EA at GB 34 and GB 39 were applied on the affected limb. The same dose of $^{99m}Tc-ECD$ was injected during the EA, and the second set of SPECT images wasobtained. Using the computer software (ICON 7.1, Siemens, USA), 3 SPECT slices (upper, middle, lower) surrounding the brain lesion were selected and each slice was divided into 10-16 brain regions. Asymmetry indexes (AI) were analyzed in each brain region. We regarded over 10% changes of AI between before and after EA as significance. For the volunteers study, 10 healthy human volunteers (5 males, 5 females, mean age $28.1{\pm}6$ years old) were selected. In the resting state, $^{99m}Tc-ECD$ brain SPECT scans were performed. On the 7th day after the resting examination, 15 minute EA was applied at GB 34 and GB 39 on the right side of the subjects. Immediately after EA, the second SPECT images were obtained inthe same manner as the resting state. Significant increases and decreases of rCBF after EA were estimated by comparing their SPECT images with those of the resting state using paired t statistics at every voxel, which were analyzed by statistical parametric mapping with a threshold of p = 0.01, uncorrected (extent threshold: k=100 voxels). Results: In stroke patients, six of the eight (75%) had significantly increased perfusion in post-acupuncture scans compared to their baseline state. In normal volunteers, GB 34-GB GB EA increased rCBF in both hemispheres including right ventral posterior cingulate (Brodmann area (BA) 23), left superior temporal, anterior transverse temporal (BA 22, 41), left parastriate, peristriate (BA 18, 19), right occipitotemporal, angular (BA 37, 39), left rostral postcentral, caudal postcentral and preparietal (BA 2, 3, 5). However GB 34-GB 39 EA decreased rCBF in the right hemisphere including triangular and middle frontal lobes. Conclusions: The results demonstrated that OB 34-GB 39 EA increased cerebral perfusion in ischemic stroke patients and increased rCBF grossly in temporal lobes of normal volunteers. It is also suggested that there may be a correlation between the GB meridian and the territory of the middle cerebral artery.

  • PDF

Alterations of Cerebral Blood Flow and Cerebrovascular Reserve in Patients with Chronic Traumatic Brain Injury Accompanying Deteriorated Intelligence (지능 저하를 동반한 두부외상 환자에서 뇌혈류 및 혈류예비능의 변화)

  • Song, Ho-Chun;Bom, Hee-Seung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.3
    • /
    • pp.183-198
    • /
    • 2000
  • Purpose: The purpose of this study was to evaluate alterations of regional cerebral blood flow (CBF) and cerebrovascular reserve (CVR), and correlation between these alternations and cognitive dysfunction in patients with chronic traumatic brain injury (TBI) and normal brain MRI findings. Materials and Methods: Thirty TBI patients and 19 healthy volunteers underwent rest/acetazolamide brain SPECT using Tc-99m HMPAO. Korean-Wechsler Adult Intelligence scale test was also performed in the patient group. Statistical analysis was performed with statistical parametric mapping software (SPM'97) Results: CBF was diminished in the left hemisphere including Wernicke's area in all patients with lower verbal scale scores. In addition, a reduction in CBF in the right frontal, temporal and parietal cortices was related with depressed scores in information, digital span, arithmetic and similarities. In patients with lower performance scale scores, CBF was mainly diminished in the right hemisphere including superior temporal and supramarginal gyri, premotor, primary somatomotor and a part of prefrontal cortices, left frontal lobe and supramarginal gyrus. CVR was diminished in sixty-four Brodmann's areas compared to control. A reduction in CVR was demonstrated bilaterally in the frontal and temporal lobes in patients with lower scores in both verbal and performance tests, and in addition, both inferior parietal and occipital lobes in information subset. Conclusion: Alterations of CBF and CVR were demonstrated in the symptomatic TBI patients with normal MRI finding. These alterations were correlated with the change of intelligence, of which the complex functions are subserved by multiple interconnected cortical structures.

  • PDF

Gridded Expansion of Forest Flux Observations and Mapping of Daily CO2 Absorption by the Forests in Korea Using Numerical Weather Prediction Data and Satellite Images (국지예보모델과 위성영상을 이용한 극상림 플럭스 관측의 공간연속면 확장 및 우리나라 산림의 일일 탄소흡수능 격자자료 산출)

  • Kim, Gunah;Cho, Jaeil;Kang, Minseok;Lee, Bora;Kim, Eun-Sook;Choi, Chuluong;Lee, Hanlim;Lee, Taeyun;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1449-1463
    • /
    • 2020
  • As recent global warming and climate changes become more serious, the importance of CO2 absorption by forests is increasing to cope with the greenhouse gas issues. According to the UN Framework Convention on Climate Change, it is required to calculate national CO2 absorptions at the local level in a more scientific and rigorous manner. This paper presents the gridded expansion of forest flux observations and mapping of daily CO2 absorption by the forests in Korea using numerical weather prediction data and satellite images. To consider the sensitive daily changes of plant photosynthesis, we built a machine learning model to retrieve the daily RACA (reference amount of CO2 absorption) by referring to the climax forest in Gwangneung and adopted the NIFoS (National Institute of Forest Science) lookup table for the CO2 absorption by forest type and age to produce the daily AACA (actual amount of CO2 absorption) raster data with the spatial variation of the forests in Korea. In the experiment for the 1,095 days between Jan 1, 2013 and Dec 31, 2015, our RACA retrieval model showed high accuracy with a correlation coefficient of 0.948. To achieve the tier 3 daily statistics for AACA, long-term and detailed forest surveying should be combined with the model in the future.

CT-Derived Deep Learning-Based Quantification of Body Composition Associated with Disease Severity in Chronic Obstructive Pulmonary Disease (CT 기반 딥러닝을 이용한 만성 폐쇄성 폐질환의 체성분 정량화와 질병 중증도)

  • Jae Eun Song;So Hyeon Bak;Myoung-Nam Lim;Eun Ju Lee;Yoon Ki Cha;Hyun Jung Yoon;Woo Jin Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.5
    • /
    • pp.1123-1133
    • /
    • 2023
  • Purpose Our study aimed to evaluate the association between automated quantified body composition on CT and pulmonary function or quantitative lung features in patients with chronic obstructive pulmonary disease (COPD). Materials and Methods A total of 290 patients with COPD were enrolled in this study. The volume of muscle and subcutaneous fat, area of muscle and subcutaneous fat at T12, and bone attenuation at T12 were obtained from chest CT using a deep learning-based body segmentation algorithm. Parametric response mapping-derived emphysema (PRMemph), PRM-derived functional small airway disease (PRMfSAD), and airway wall thickness (AWT)-Pi10 were quantitatively assessed. The association between body composition and outcomes was evaluated using Pearson's correlation analysis. Results The volume and area of muscle and subcutaneous fat were negatively associated with PRMemph and PRMfSAD (p < 0.05). Bone density at T12 was negatively associated with PRMemph (r = -0.1828, p = 0.002). The volume and area of subcutaneous fat and bone density at T12 were positively correlated with AWT-Pi10 (r = 0.1287, p = 0.030; r = 0.1668, p = 0.005; r = 0.1279, p = 0.031). However, muscle volume was negatively correlated with the AWT-Pi10 (r = -0.1966, p = 0.001). Muscle volume was significantly associated with pulmonary function (p < 0.001). Conclusion Body composition, automatically assessed using chest CT, is associated with the phenotype and severity of COPD.

Estimating the Spatial Distribution of Rumex acetosella L. on Hill Pasture using UAV Monitoring System and Digital Camera (무인기와 디지털카메라를 이용한 산지초지에서의 애기수영 분포도 제작)

  • Lee, Hyo-Jin;Lee, Hyowon;Go, Han Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.365-369
    • /
    • 2016
  • Red sorrel (Rumex acetosella L.), as one of exotic weeds in Korea, was dominated in grassland and reduced the quality of forage. Improving current pasture productivity by precision management requires practical tools to collect site-specific pasture weed data. Recent development in unmanned aerial vehicle (UAV) technology has offered cost effective and real time applications for site-specific data collection. To map red sorrel on a hill pasture, we tested the potential use of an UAV system with digital cameras (visible and near-infrared (NIR) camera). Field measurements were conducted on grazing hill pasture at Hanwoo Improvement Office, Seosan City, Chungcheongnam-do Province, Korea on May 17, 2014. Plant samples were obtained at 20 sites. An UAV system was used to obtain aerial photos from a height of approximately 50 m (approximately 30 cm spatial resolution). Normalized digital number values of Red, Green, Blue, and NIR channels were extracted from aerial photos. Multiple linear regression analysis results showed that the correlation coefficient between Rumex content and 4 bands of UAV image was 0.96 with root mean square error of 9.3. Therefore, UAV monitoring system can be a quick and cost effective tool to obtain spatial distribution of red sorrel data for precision management of hilly grazing pasture.