• Title/Summary/Keyword: Correlation Plot

Search Result 403, Processing Time 0.033 seconds

Force-deformation relationship prediction of bridge piers through stacked LSTM network using fast and slow cyclic tests

  • Omid Yazdanpanah;Minwoo Chang;Minseok Park;Yunbyeong Chae
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.469-484
    • /
    • 2023
  • A deep recursive bidirectional Cuda Deep Neural Network Long Short Term Memory (Bi-CuDNNLSTM) layer is recruited in this paper to predict the entire force time histories, and the corresponding hysteresis and backbone curves of reinforced concrete (RC) bridge piers using experimental fast and slow cyclic tests. The proposed stacked Bi-CuDNNLSTM layers involve multiple uncertain input variables, including horizontal actuator displacements, vertical actuators axial loads, the effective height of the bridge pier, the moment of inertia, and mass. The functional application programming interface in the Keras Python library is utilized to develop a deep learning model considering all the above various input attributes. To have a robust and reliable prediction, the dataset for both the fast and slow cyclic tests is split into three mutually exclusive subsets of training, validation, and testing (unseen). The whole datasets include 17 RC bridge piers tested experimentally ten for fast and seven for slow cyclic tests. The results bring to light that the mean absolute error, as a loss function, is monotonically decreased to zero for both the training and validation datasets after 5000 epochs, and a high level of correlation is observed between the predicted and the experimentally measured values of the force time histories for all the datasets, more than 90%. It can be concluded that the maximum mean of the normalized error, obtained through Box-Whisker plot and Gaussian distribution of normalized error, associated with unseen data is about 10% and 3% for the fast and slow cyclic tests, respectively. In recapitulation, it brings to an end that the stacked Bi-CuDNNLSTM layer implemented in this study has a myriad of benefits in reducing the time and experimental costs for conducting new fast and slow cyclic tests in the future and results in a fast and accurate insight into hysteretic behavior of bridge piers.

Determination of inclusion complex formation constants for the β-CD and [Cu(Dien)(sub-Py)]2+ ion by the spectrophotometric methods (분광 광도법에 의한 β-CD와 [Cu(Dien)(sub-Py)]2+이온간의 복합체 형성 상수 결정)

  • Kim, Chang Suk;Oh, Ju Young
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.406-412
    • /
    • 2007
  • The formation of inclusion complexes between ${\beta}$-cyclodextrin and diethylenetriamine substituted-pyridine copper(II) perchlorate; [Cu(dien)(sub-py)] $(ClO_4)_2$, were studied by spectrophotometric methods. On account of charge-transfer band(MLCT) and $^2T_2{\rightarrow}^2E$, the two high peaks were observed as an inclusion complex for the [${\beta}$-CD]$[Cu(dien)(p-Cl-py)]^{2+}$ in the ultraviolet region of the spectrum. The ${\beta}$-CD and $[Cu(dien)(sub-py)]^{2+}$ ion formed a 1:1 complex, and the formation constants were decreased with the increasing temperatures, due to weak binding energy between ${\beta}$-CD and $[Cu(dien)(sub-py)]^{2+}$ ion. This reaction was controlled by enthalpy. In a correlation of the Hammett substituent constants and formation constants for the reaction, formation constants were increased by strong binding energy in the inclusion complexes when electron donating groups were substituted in pyridine ring.

Statistical Estimation of Wind Speed in the Gwangyang-Myodo Region (광양 - 묘도 지역의 통계학적인 풍속 추정)

  • Bae, Yong Gwi;Han, Gwan Mun;Lee, Seong Lo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.197-205
    • /
    • 2008
  • In order to estimate mean wind speed in the Gwangyang-Myodo Region, the probability distribution model of extreme values has been used in the statistical analysis of joint distribution probability of daily maximum wind speed and corresponding direction in this paper. For this purpose frequency of daily maximum records at respective stations is inquired into and sample of largest yearly wind speed of sixteen compass direction and non-direction is extracted from daily data of maximum wind speed and appropriate direction of the meteorological observing stations nearby the bridge construction site. These extreme speed records are applied to Gumbel and Weibull distribution model and parameters are estimated through method of moment and method of least squares etc. And also, distribution and parameters are inquired into whether it is fitted through the probability plot correlation coefficient examination. From fitted parameters the largest yearly wind speed of sixteen compass direction and non-direction is extrapolated taking into account factors regarding sample size of data and distance from the bridge construction site according to the appropriate stations.

A novel analytical evaluation of the laboratory-measured mechanical properties of lightweight concrete

  • S. Sivakumar;R. Prakash;S. Srividhya;A.S. Vijay Vikram
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.221-229
    • /
    • 2023
  • Urbanization and industrialization have significantly increased the amount of solid waste produced in recent decades, posing considerable disposal problems and environmental burdens. The practice of waste utilization in concrete has gained popularity among construction practitioners and researchers for the efficient use of resources and the transition to the circular economy in construction. This study employed Lytag aggregate, an environmentally friendly pulverized fuel ash-based lightweight aggregate, as a substitute for natural coarse aggregate. At the same time, fly ash, an industrial by-product, was used as a partial substitute for cement. Concrete mix M20 was experimented with using fly ash and Lytag lightweight aggregate. The percentages of fly ash that make up the replacements were 5%, 10%, 15%, 20%, and 25%. The Compressive Strength (CS), Split Tensile Strength (STS), and deflection were discovered at these percentages after 56 days of testing. The concrete cube, cylinder, and beam specimens were examined in the explorations, as mentioned earlier. The results indicate that a 10% substitution of cement with fly ash and a replacement of coarse aggregate with Lytag lightweight aggregate produced concrete that performed well in terms of mechanical properties and deflection. The cementitious composites have varying characteristics as the environment changes. Therefore, understanding their mechanical properties are crucial for safety reasons. CS, STS, and deflection are the essential property of concrete. Machine learning (ML) approaches have been necessary to predict the CS of concrete. The Artificial Fish Swarm Optimization (AFSO), Particle Swarm Optimization (PSO), and Harmony Search (HS) algorithms were investigated for the prediction of outcomes. This work deftly explains the tremendous AFSO technique, which achieves the precise ideal values of the weights in the model to crown the mathematical modeling technique. This has been proved by the minimum, maximum, and sample median, and the first and third quartiles were used as the basis for a boxplot through the standardized method of showing the dataset. It graphically displays the quantitative value distribution of a field. The correlation matrix and confidence interval were represented graphically using the corrupt method.

QTL Mapping of Cold Tolerance at the Seedling Stage using Introgression Lines Derived from an Intersubspecific Cross in Rice

  • Park, In-Kyu;Oh, Chang-Sik;Kim, Dong-Min;Yeo, Sang-Min;Ahn, Sang-Nag
    • Plant Breeding and Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Low-temperature stress is an important factor controlling the growth and development of rice (Oryza sativa L.) in temperate region. In this study, a molecular linkage map consisting of 136 SSR markers was employed to identify QTL associated with cold tolerance at the seedling stage. 80 recombinant inbred lines (RILs) from an intersubspecific cross between Milyang23 (O. sativa ssp. Indica) and Hapcheonaengmi3, a japonica weedy rice and the parents were evaluated for leaf discoloration and SAPD value of seedlings. Rice plants were grown for 15 days in the low-temperature condition (13/20℃ day/night) and the control condition (25/20℃ day/night) in the growth chamber. The degree of leaf discoloration showed a highly significant correlation with the SPAD value in the low-temperature plot (r = -0.708, P < 0.0001). A total of four QTLs for SPAD were identified and the phenotypic variance explained by each QTL ranged from 5.4 to 16.0%. Two QTLs detected in the control condition were located on chromosomes 2 and 5, respectively. Two QTL on chromosomes 1 and 4 were detected at the low-temperature condition and Hapcheonaengmi3 alleles increased the SPAD values at these loci. Substitution mapping was conducted to delimit the position of qSPA-4 using introgression lines derived from the same cross. Results indicated that qSPA-4 was located in a 810-Kb region flanked by RM16333 and RM16368. The results indicated that Hapcheonaengmi3 contains QTL alleles that are likely to improve cold tolerance of Indica rice.

Utilization of UAV Remote Sensing in Small-scale Field Experiment : Case Study in Evaluation of Plat-based LAI for Sweetcorn Production

  • Hyunjin Jung;Rongling Ye;Yang Yi;Naoyuki Hashimoto;Shuhei Yamamoto;Koki Homma
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.75-75
    • /
    • 2022
  • Traditional agriculture mostly focused on activity in the field, but current agriculture faces problems such as reduction of agricultural inputs, labor shortage and so on. Accordingly, traditional agricultural experiments generally considered the simple treatment effects, but current agricultural experiments need to consider the several and complicate treatment effects. To analyze such several and complicate treatment effects, data collection has the first priority. Remote sensing is a quite effective tool to collect information in agriculture, and recent easier availability of UAVs (Unmanned Aerial Vehicles) enhances the effectiveness. LAI (Leaf Area Index) is one of the most important information for evaluating the condition of crop growth. In this study, we utilized UAV with multispectral camera to evaluate plant-based LAI of sweetcorn in a small-scale field experiment and discussed the feasibility of a new experimental design to analyze the several and complicate treatment effects. The plant-based SR measured by UAV showed the highest correlation coefficient with LAI measured by a canopy analyzer in 2018 and 2019. Application of linear mix model showed that plant-based SR data had higher detection power due to its huge number of data although SR was inferior to evaluate LAI than the canopy analyzer. The distribution of plant-based data also statistically revealed the border effect in treatment plots in the traditional experimental design. These results suggest that remote sensing with UAVs has the advantage even in a small-scale experimental plot and has a possibility to provide a new experimental design if combined with various analytical applications such as plant size, shape, and color.

  • PDF

A streamlined pipeline based on HmmUFOtu for microbial community profiling using 16S rRNA amplicon sequencing

  • Hyeonwoo Kim;Jiwon Kim;Ji Won Cho;Kwang-Sung Ahn;Dong-Il Park;Sangsoo Kim
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.40.1-40.11
    • /
    • 2023
  • Microbial community profiling using 16S rRNA amplicon sequencing allows for taxonomic characterization of diverse microorganisms. While amplicon sequence variant (ASV) methods are increasingly favored for their fine-grained resolution of sequence variants, they often discard substantial portions of sequencing reads during quality control, particularly in datasets with large number samples. We present a streamlined pipeline that integrates FastP for read trimming, HmmUFOtu for operational taxonomic units (OTU) clustering, Vsearch for chimera checking, and Kraken2 for taxonomic assignment. To assess the pipeline's performance, we reprocessed two published stool datasets of normal Korean populations: one with 890 and the other with 1,462 independent samples. In the first dataset, HmmUFOtu retained 93.2% of over 104 million read pairs after quality trimming, discarding chimeric or unclassifiable reads, while DADA2, a commonly used ASV method, retained only 44.6% of the reads. Nonetheless, both methods yielded qualitatively similar β-diversity plots. For the second dataset, HmmUFOtu retained 89.2% of read pairs, while DADA2 retained a mere 18.4% of the reads. HmmUFOtu, being a closed-reference clustering method, facilitates merging separately processed datasets, with shared OTUs between the two datasets exhibiting a correlation coefficient of 0.92 in total abundance (log scale). While the first two dimensions of the β-diversity plot exhibited a cohesive mixture of the two datasets, the third dimension revealed the presence of a batch effect. Our comparative evaluation of ASV and OTU methods within this streamlined pipeline provides valuable insights into their performance when processing large-scale microbial 16S rRNA amplicon sequencing data. The strengths of HmmUFOtu and its potential for dataset merging are highlighted.

Assessment of compressive strength of high-performance concrete using soft computing approaches

  • Chukwuemeka Daniel;Jitendra Khatti;Kamaldeep Singh Grover
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.55-75
    • /
    • 2024
  • The present study introduces an optimum performance soft computing model for predicting the compressive strength of high-performance concrete (HPC) by comparing models based on conventional (kernel-based, covariance function-based, and tree-based), advanced machine (least square support vector machine-LSSVM and minimax probability machine regressor-MPMR), and deep (artificial neural network-ANN) learning approaches using a common database for the first time. A compressive strength database, having results of 1030 concrete samples, has been compiled from the literature and preprocessed. For the purpose of training, testing, and validation of soft computing models, 803, 101, and 101 data points have been selected arbitrarily from preprocessed data points, i.e., 1005. Thirteen performance metrics, including three new metrics, i.e., a20-index, index of agreement, and index of scatter, have been implemented for each model. The performance comparison reveals that the SVM (kernel-based), ET (tree-based), MPMR (advanced), and ANN (deep) models have achieved higher performance in predicting the compressive strength of HPC. From the overall analysis of performance, accuracy, Taylor plot, accuracy metric, regression error characteristics curve, Anderson-Darling, Wilcoxon, Uncertainty, and reliability, it has been observed that model CS4 based on the ensemble tree has been recognized as an optimum performance model with higher performance, i.e., a correlation coefficient of 0.9352, root mean square error of 5.76 MPa, and mean absolute error of 4.1069 MPa. The present study also reveals that multicollinearity affects the prediction accuracy of Gaussian process regression, decision tree, multilinear regression, and adaptive boosting regressor models, novel research in compressive strength prediction of HPC. The cosine sensitivity analysis reveals that the prediction of compressive strength of HPC is highly affected by cement content, fine aggregate, coarse aggregate, and water content.

A Study on the Stochastic Demand Forecast for the Capacity Calculation of Urban Planning Facilities (도시계획시설 용량 산정을 위한 확률적 수요 예측에 관한 연구)

  • Jae Young Kang;Jong Jin Kim
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.135-146
    • /
    • 2024
  • This study predicts the means sharing ratio of the urban air transportation (UAM) when the VertiHub of the UAM in the southern western part is built at Songjeong Station in Gwanju. Based on Monte Carlo simulation of the utility function and means selection logit model for each means of transportation, our findings indicate an average mode share of 0.95%, with a variability range from 0.07% to 4.7%. Moreover, 95% of the simulation outcomes fall below a 2.02% mode share. Sensitivity analysis, conducted via Tornado Plot, highlights that the mode share is principally influenced by factors such as the unit fare, cost parameter, basic fare, and the time required for takeoff and landing. Notably, a negative correlation exists for unit fare, basic fare, and takeoff and landing time, suggesting the necessity of setting an appropriate level of fair to enhance UAM utilization.

Prediction of Agricultural Wind and Gust Using Local Ensemble Prediction System (국지앙상블시스템을 활용한 농경지 바람 및 강풍 예측)

  • Jung Hyuk Kang;Geon-Hu Kim;Kyu Rang Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.2
    • /
    • pp.115-125
    • /
    • 2024
  • Wind is a meteorological factor that has a significant impact on agriculture. Gust cause damage such as fruit drop and damage to facilities. In this study, low-altitude wind speed prediction was performed by applying physical models to Local Ensemble Prediction System (LENS). Logarithmic Law (LOG) and Power Law (POW) were used as the physical models, and Korea Ministry of Environment indicators and Moderate Resolution Imaging Spectroradiometer (MODIS) data were applied as indicator variables. We collected and verified wind and gust data at 3m altitude in 2022 operated by the Rural Development Administration, and presented the results in scatter plot, correlation coefficient, Root Mean Square Error (RMSE), Normalized Root Mean Square Error (NRMSE), and Threat Score (TS). The LOG-applied model showed better results in wind speed, and the POW-applied model showed better results in gust.