• Title/Summary/Keyword: Correlated wind speed

Search Result 75, Processing Time 0.028 seconds

Seasonal Variations in Mercury Deposition over the Yellow Sea, July 2007 through April 2008

  • Ghim, Young Sung;Oh, Hyun Sun;Kim, Jin Young;Woo, Jung-Hun;Chang, Young-Soo
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.3
    • /
    • pp.146-155
    • /
    • 2016
  • Spatial and temporal variations of mercury, including dry and wet deposition fluxes, were assessed over Northeast Asia, targeting the Yellow Sea, using meteorology and chemistry models. Four modeling periods, each representative of one of the four seasons, were selected. Modeling results captured general patterns and behaviors, and fell within similar ranges with respect to observations. However, temporal variations of mercury were not closely matched, possibly owing to the effects of localized emissions. Modeling results indicated that dry deposition is correlated with wind speed, while wet deposition is correlated with precipitation amount. Overall, the wet deposition flux of $66ng/m^2-day$ was about twice as large as the dry deposition flux of $32ng/m^2-day$, when averaged over the four modeling periods. Dry deposition occurred predominantly in the form of reactive gaseous mercury (RGM). In contrast, RGM accounted for only about two-thirds of wet deposition, while particulate mercury accounted for the remainder.

Use of Information Technologies to Explore Correlations between Climatic Factors and Spontaneous Intracerebral Hemorrhage in Different Age Groups

  • Ting, Hsien-Wei;Chan, Chien-Lung;Pan, Ren-Hao;Lai, Robert K.;Chien, Ting-Ying
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.142-151
    • /
    • 2017
  • Spontaneous intracerebral hemorrhage (sICH) has a high mortality rate. Research has demonstrated that sICH occurrence is related to weather conditions; therefore, this study used the decision tree method to explore the impact of climatic risk factors on sICH at different ages. The Taiwan National Health Insurance Research Database (NHIRD) and other open-access data were used in this study. The inclusion criterion was a first-attack sICH. The decision tree algorithm and random forest were implemented in R programming language. We defined a high risk of sICH as more than the average number of cases daily, and the younger, middle-aged and older groups were calculated as having 0.77, 2.26 and 2.60 cases per day, respectively. In total, 22,684 sICH cases were included in this study; 3,102 patients were younger (<44 years, younger group), 9,089 were middle-aged (45-64 years, middle group), and 10,457 were older (>65 years, older group). The risk of sICH in the younger group was not correlated with temperature, wind speed or humidity. The middle group had two decision nodes: a higher risk if the maximum temperature was >$19^{\circ}C$ (probability = 63.7%), and if the maximum temperature was <$19^{\circ}C$ in addition to a wind speed <2.788 (m/s) (probability = 60.9%). The older group had a higher risk if the average temperature was >$23.933^{\circ}C$ (probability = 60.7%). This study demonstrated that the sICH incidence in the younger patients was not significantly correlated with weather factors; that in the middle-aged sICH patients was highly-correlated with the apparent temperature; and that in the older sICH patients was highly-correlated with the mean ambient temperature. "Warm" cold ambient temperatures resulted in a higher risk of sICH, especially in the older patients.

The Electrical Characteristics of The Modules According to The Environment of The Floating Photovoltaic System (수상태양광 발전 시스템의 환경에 따른 모듈의 전기적 특성)

  • Hwang, Soo Hyun;Lee, Dong Yeong;Kwon, O geuk;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.283-289
    • /
    • 2018
  • In our study, we collected data from a 100 kW floating photovoltaic (PV) system installed in Gyeongnam Hapcheon Dam and observed correlations between the power generation of the floating PV system and the irradiance, water temperature, humidity, ambient temperature, wind speed, and module temperature. Firstly, there was little correlation between the water temperature and power generation. Secondly, the ambient temperature, wind speed, and humidity all showed greater correlations with power generation. Finally, the power generation was very highly correlated with the irradiance and module temperature. In conclusion, the power generation of the floating PV system is related individually to environmental factors.

A Study on Sensitivity of Heavy Precipitation to Domain Size with a Regional Numerical Weather Prediction Model (지역예측모델 영역 크기에 따른 집중호우 수치모의 민감도 실험)

  • Min, Jae-Sik;Roh, Joon-Woo;Jee, Joon-Bum;Kim, Sangil
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.85-95
    • /
    • 2016
  • In this study, we investigated the variabilities of wind speed of 850 hPa and precipitable water over the East Asia region using the NCEP Final Analysis data from December 2001 to November 2011. A large variance of wind speed was observed in northern and eastern China during the winter period. During summer, the regions of the East China Sea, the South Sea of Japan and the East Sea show large variances in the wind speed caused by an extended North Pacific High and typhoon activities. The large variances in the wind speed in the regions are shown to be correlated with the inter-annual variability of precipitable water over the inland region of windward side of the Korean Peninsula. Based on the investigation, sensitivity tests to the domain size were performed using the WRF model version 3.6 for heavy precipitation events over the Korean Peninsula for 26 and 27 July 2011. Numerical experiments of different domain sizes were set up with 5 km horizontal and 50 levels vertical resolutions for the control and the first experimental run, and 9 km horizontal for the second experimental run. We found that the major rainfalls correspond to shortwave troughs with baroclinic structure over Northeast China and extended North Pacific High. The correlation analysis between the observation and experiments for 1-h precipitation indicated that the second experiment with the largest domain had the best performance with the correlation coefficient of 0.79 due to the synoptic-scale systems such as short-wave troughs and North Pacific High.

Experimental study on possible vortex shedding in a suspension bridge - Part II - Results when under typhoon Babs and York

  • Law, S.S.;Yang, Q.S.;Fang, Y.L.
    • Wind and Structures
    • /
    • v.10 no.6
    • /
    • pp.555-576
    • /
    • 2007
  • Statistical analysis on the measured responses of a suspension bridge deck (Law, et al. 2007) show that vibration response at the first torsional mode of the structure has a significant increase at and beyond the critical wind speed for vortex shedding as noted in the wind tunnel tests on a sectional model. This paper further analyzes the measured responses of the structure when under typhoon conditions for any possible vortex shedding events. Parameters related to the lifting force in such a possible event and the vibration amplitudes are estimated with a single-degree-of-freedom model of the system. The spatial correlation of vortex shedding along the bridge span is also investigated. Possible vortex shedding events are found at both the first torsional and second vertical modes with the root-mean-square amplitudes comparable to those predicted from wind tunnel tests. Small negative stiffness due to wind effects is observed in isolated events that last for a short duration, but the aerodynamic damping exhibits either positive or negative values when the vertical angle of wind incidence is beyond ${\pm}10^{\circ}$. Vibration of the bridge deck is highly correlated in the events at least in the middle one-third of the main span.

Computational method in database-assisted design for wind engineering with varying performance objectives

  • Merhi, Ali;Letchford, Chris W.
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.439-452
    • /
    • 2021
  • The concept of Performance objective assessment is extended to wind engineering. This approach applies using the Database-Assisted Design technique, relying on the aerodynamic database provided by the National Institute of Standards and Technology (NIST). A structural model of a low-rise building is analyzed to obtain influence coefficients for internal forces and displacements. Combining these coefficients with time histories of pressure coefficients on the envelope produces time histories of load effects on the structure, for example knee and ridge bending moments, and eave lateral drift. The peak values of such effects are represented by an extreme-value Type I Distribution, which allows the estimation of the gust wind speed leading to the mean hourly extreme loading that cause specific performance objective compromises. Firstly a fully correlated wind field over large tributary areas is assumed and then relaxed to utilize the denser pressure tap data available but with considerably more computational effort. The performance objectives are determined in accordance with the limit state load combinations given in the ASCE 7-16 provisions, particularly the Load and Resistance Factor Design (LRFD) method. The procedure is then repeated for several wind directions and different dominant opening scenarios to determine the cases that produce performance objective criteria. Comparisons with two approaches in ASCE 7 are made.

Distribution of vibration signals according to operating conditions of wind turbine (풍력발전기 운전환경에 따른 진동신호 분포)

  • Shin, Sung-Hwan;Kim, SangRyul;Seo, Yun-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.192-201
    • /
    • 2016
  • Condition Monitoring System (CMS) has been used to detect unexpected faults of wind turbine caused by the abrupt change of circumstances or the aging of its mechanical part. In fact, it is a very hard work to do regular inspection for its maintenance because wind turbine is located on the mountaintop or sea. The purpose of this study is to find out distribution patterns of vibration signals measured from the main mechanical parts of wind turbine according to its operation condition. To this end, acceleration signals of main bearing, gearbox, generator, wind speed, rotational speed, etc were measured through the long period more than 2 years and trend analyses on each signal were conducted as a function of the rotational speed. In addition, correlation analysis among the signals was done to grasp the relation between mechanical parts. As a result, the vibrations were dependent on the rotational speed of main shaft and whether power was generated or not, and their distributions at a specific rotational speed could be approximated to Weibull distribution. It was also investigated that the vibration at main bearing was correlated with vibration at gearbox each other, whereas vibration at generator should be dealt with individually because of generating mechanism. These results can be used for improving performance of CMS that early detects the mechanical abnormality of wind turbine.

Vibration Monitoring and Power Performance Evaluation of a Small Stand-alone Wind Turbine Generator (소형 독립형 풍력발전기의 진동 모니터링 및 출력 성능 평가)

  • Yoo, N.S.;Kim, Yoon-Ho;Kim, Seock-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.114-120
    • /
    • 2007
  • Vibration performance of a 6 kW stand-alone wind turbine(W/T) generator is investigated under the wind environment of Daegwanryung mountain area. In the W/T, wind condition, power performance and structural stability are correlated each other An integrated monitoring system which consists of accelerometers, anemometers, power meters and auxiliary sensors for atmospheric data are constructed to measure the required data simultaneously. Based upon the data acquired over a long period of time, vibration performance of the W/T structure is estimated with annual wind data and generating power performance. Within the operating speed range, possibility of severe nitration is diagnosed. Vibration sources are identified and countermeasures are proposed. The goal of the study is to offer the basic information on W/T vibration performance at the design stage of a small stand alone W/T structure.

Relationship between Pollen Concentration and Meteorological Condition in an Urban Area (도시지역 공중화분 농도와 기상조건과의 관계)

  • Oh, In-Bo;Kim, Yangho;Choi, Kee-Ryong;Lee, Ji Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.780-788
    • /
    • 2013
  • This study attempted to determine important meteorological parameters related to airborne pollen concentrations in urban areas. Hourly pollen measurement data were prepared from a regular sampling with a volumetric Burkard spore trap at a site in the Ulsan city, during the spring season (March~May) of 2011. Results showed that the daily mean and maximum concentrations for total pollen counts during the spring season were statistically significantly correlated with both air temperature and wind speed; daily mean pollen concentration was the most highly related to daily maximum temperature (r=0.567, p<0.001). It was also identified that pollen concentration has a stronger relationship with wind speed at the rural site than at the urban one, which confirms that strong wind conditions over the pollen sources area can be favorable for pollen dispersal, resulting in increases in airborne pollen concentrations downwind. From the results of an oak-pollen episode analysis, it was found that there was a significant relationship between hourly variation of oak pollen concentrations and dynamic meteorological factors, such as wind and mixing height (representing the boundary layer depth); especially, a strong southwestern wind and elevated mixing height was associated with high nocturnal concentrations of oak pollen. This study suggests that temperature, wind, and mixing height can be important considerations in explaining the pollen concentration variations. Additional examination of complex interactions of multiple meteorological parameters affecting pollen behavior should be carried out in order to better understand and predict the temporal and spatial pollen distribution in urban areas.

Effect of Wind Velocity on Photosynthesis, Sap Flux, and Damage of Leaves in Apple Trees (풍속이 사과나무의 광합성 특성과 수액이동 및 엽손상에 미치는 영향)

  • Yim, Ji Hye;Choi, Young Min;Choi, Dong Geun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.2
    • /
    • pp.131-136
    • /
    • 2014
  • This study was carried out to determine the effects of wind speed on physiological responses in 'Fuji' apple (Malus pumila Miller). Two levels of wind blowing (3 and $5m{\cdot}s^{-1}$) were produced by large electric fans. Photosynthetic rate was reduced by one-way wind blowing treatment at $5m{\cdot}s^{-1}$, compared to the mild wind control, and this reduction was more obvious with stronger wind and increasing duration of wind application. The reduction in photosynthesis by the wind treatments was correlated with that in the proportion of opened stomates and stomatal conductance. The one-way wind treatment at $5m{\cdot}s^{-1}$ caused a leaf browning and leaf fall, and this negative effect became more serious with increasing time of exposure to the wind treatments. The sap flux through stem increased in all wind treatments compared to the natural mild wind.